MECHANICS; OR, THE

 0 F

M O T I O N. comprehentíng,

I. The general Laws of Motion.
II. The Descent of Bodiesperpendicularly, and down inclined Planesf and alfo in Curve Surfaces. The Motion of Pendulums.
III. Centers of Gravity. The Eeullibrium of Beams of Timber, and their Forces and Directions.
IV. The Mechanical Powers.
V. The comparative Strength of $\boldsymbol{T}_{\text {imber }}$, and its Stress. The Powers of Engines, their Motion, and Friction.
VI. Hydrostatics and Pneumatics.

Da veniam fcriptis, quorum non gloria nobis caufa, sed utilitas officiumque, fuit.

> Ovid de Ponto III.

L O N D O N:

Printed for J. Nourse, in the Strand; Bookfeller in Ordinary to his MAJEsTY.
MDCCLXIX.

THE

PREFACE.

$\boldsymbol{H}^{A V}$ ING fome years fince written a large book of Mechanics, which is fold by Meffr. Robinfon, and Co. in Pater-nofter-Row. I bave bere given a fhort abftract of that book, as it falls properly into this courfe; and efpecially as that branch of frience, is of fucb extenfive ufe in the affairs of buman life. I do not in the leaft, defign this to interfere with the other book, being ratber an introduction to it, as it explains feveral things in it more at large; particularly in the firf Section, as being of univerfal extent and ufe; and likerwife in feveral otber parts of the book, efpecially fuch as bave been objected to by ignorant writers. I bave alfo added feveral things not mentioned in the otber book, which are more fimple and eafy, and more proper for learners. So that tbis Bort treatife may be looked upon as an introduction to the otber book, and will doubtlefs facilitate the reading of i. As to the bigher and more difficult matters, as ferw care to trouble their beads about them, I have faid little of tbem bere, being not fo proper for an introducition. To mention one or two tbings; I bad taken a great deal of pains to find out the true form of a bridge, that Ball be the frongeft, and of a Bip that fall fail the fafteft; both upon principles that I know to be as certain and demonftrative as the Elements of Euclid; both these you bave in the other book. But, as we bave no occafion in England, for
the frongeft bridges, or the fwifteft bips; Mathematicians, for the future, may find fometbing elfe to do, than run into fuck perplext and ufelefs difquiftions. For indeed when any of thefe grand tbings are to be performed, they generally fall into the bands of fuch people, as know little of the nature of them. They perbaps know bow to lay down upon paper, the plan of a defign, by rule and compafs, and to do feveral problems in pratical geometry; and not much more. As if this was an adequate qualification, for conducting fucb marnificent works, as coft many thoufand pounds to execute. So that thefe things, inftead of being confructed by the rules of art; they are too often done by fancy, witbout any true rules.

But in this there is no great wonder, confdering bow ferw people fudy this art; and among thefe that do, bow ferw are competent judges. For even among thofe that prefume to write about it, it is furprizing to fee what miftakes they daily run intc. Ons denies the compofition and refolution of forces; another cannot be fatisfied with fome of the mechanical powers, not even fo fimple a thing as the wedge; all owing to the wrong notions they bave imbibed. And in conSequence of this, will be either condemning the art itfelf, or criticijing on otber writers, whom they do not underfand.

As to what I bave written on tbis fubject; I bave all along given the demonftrations of the feveral tbings I kave bandled; and I expect that to be my teft, as to the truth or falbood thereof. And by this teft I leave them to be tried by any judicious, boneft reader; wbo is a lover of truth, and a promoter of fience.

W. Emerfon.

[I]

MECHANICS.

DEFINITIONS.

1. $M^{E C H A N I C S}$ is a fcience, which treats of. the forces, motions, velocities, and in general, of the actions of bodies upon one another. It teaches how to move any given weight with any given power; how to contrive engines to raife great weights, or to perform any kind of motion.
2. Body is the mafs or quantity of matter; an elaftic body is that which yields to a ftroke, and recovers its figure again. But if not, 'tis called an $u n$ elaftic body.
3. Denjty is the proportion of the quantity of matter in any body, to the quantity of matter in another body of the fame bignefs.
4. Force is a power exerted on a body to move it. If it act inftantaneoully, 'tis called Percufion, or impulfe. If conftantly, 'tis an accelerative force.
5. Velocity is a property of motion, by which a body paffes over a certain fpace in a certain time. And is greater or leffer, as it paffes over a greater or leffer fpace in a certain time as fuppofe a fecond.
6. Motion is a contizual and fucceffive change of place. If the body moves equally, 'tis called equable or uniform motion. If it increafes or decreafes, 'tis called accelerated or retarded motion. When it is compared with fome body at reft, 'tis called abfo-

2

DEFINITIONS.

lute motion. But when compared with others in motion, it is called relative motion.
7. Direciion of motion is the courfe or way the body tends, or the line it moves in.
8. Quantity of motion, is the motion a body has, confidered both in regard to its velocity and quantity of matter. This is alfo called the Momentum of a body.
9. Vis inertia, is the innate force of matter, by which it refifts any change, ftriving to preferve its prefent fate of reft or motion.
10. Gravty is that force wherewith a body endeavours to fall downwards. It is called abfolute gravity in empty fpace; and relative gravity when immerfed in a fluid.
II. Specific gravity, is the greater or leffer weight of bodies of the fame magnitude, or the proportion between their weights. This proceeds from the natural denfity of bodies.
12. Center of gravity, is a certain point of a body; upon which, the body when fufpended, will reft in any polition.
13. Center of motion, is a fixed point about which a body moves. And the axis of motion is a fixed line it moves about.
14. Power and weight, when oppofed to one another, fignify the body that moves another, and the other which is moved. The body which begins and communicates motion is the power; and that which receives the motion, is the weight.
15. Equilibrium is the balance of two or more forces, fo as to remain at reft.
16. Macbine or Engine, is any inftrument to move bodies, made of levers, whcels, pullies, \&c.
17. Mechanic powers, are the ballance, lever, wheel, pulley, fcrew and wedge.
18. Strefs is the effect any force has to break 2 beam, or any other body; and frength is the refistance
refiftance it is able to make againft any ftraining force.
19. Fritzion is the refiftance which a machine fuffers, by the parts rubbing againft one another.

> POSTULATA.

1. That a fmall part of the furface of the earth may be looked upon as a plane. For tho' the earth be round, yet fuch a fmall part of it as we have any occafion to confider, does not fenfibly differ from a plane.
2. That heavy bodies defcend in lines parallel to one another. For tho' they all tend to a point which is the center of the earth, yet that center is at fuch a diftance that thefe lines differ infenfibly from parallel lines.
3. The fame body is of the fame weight in all places on or near the earth's furface. For the difference is not fenfible in the feveral places we can go to.
4. Tho' all matter is rough, and all engines :mperfect; yet for the eafe of calculation, we muft fuppofe all planes perfectly even; all bodiés perfectly fmooth; and all bodies and machines to move without friction or refiftance; all lines ftreight and inflexible, without weight or thicknefs; cords extremely pliable, and fo on.

A $\mathrm{X} \quad \mathrm{I} \quad \mathrm{O} \quad \mathrm{M}$ S.

1. Every body endeavours to remain in its prefent ftate, whether it be at reft, or moving uniformly in a right line.
2. The alteration of motion by any external force is always proportional to that force, and in direction of the right line in which the force acts.
3. Action and re-action, between any two bodies, are equal and contrary.
4. The motion of any body is made up of the fum of the motions of all the parts.
5. The weights of all bodies in the fame place, are proportional to the quantities of matter they contain, without any regard to their figure.
6. The vis inertix of any body, is proportional to the quantity of matter.
7. Every body will defcend to the loweft place it can get to.
8. Whatever fuftains a heavy body, bears all the weight of it.
9. Two equal forces acting againft one another in contrary directions; deftroy one anothers effects. And unequal forces act only with the difference of them.
10. When a body is kept in equilibrio ; the contrary forces in any line of direction are equal.
11. If a certain force generate any motion; an equal force acting in a contrary direction, will defroy as much motion in the fame time.
12. If a body be acted on by any power in a given direction. It is all one in what point of that line of direction, the power is applied.
13. If a body is drawn by a rope, all the parts of the rope are equally ftretched. And the force in any part acts in direction of that part. And it is the fame thing whether the rope is drawn out at length, or goes over feveral pullies.
14. If feveral forces at one end of a lever, act againt feveral forces at the other end; the lever acts and is acted on in direction of its length.

S E C T. I.

The General Lawes of Motion.

P'R O P. I.

THE quantities of matter in all bodies, are in the compound ratio of their magnitudes and denfities.

For (Def. 3.) in bodies of the fame magnitudes, the quantities of matter will be as the denfities. Increafe the magnitude in any ratio, and the quantity of matter is increafed in the fame ratio. Confequently the quantity of matter is in the compound ratio of the denfity and magnitude.

Cor. 1. In two fimilar bodies, the quantities of matter are as the denfities, and cubes of the diameters.

For the magnitudes of bodies are as the cubes of the diameters.

Cor. 2. The quantities of matter are as the magnitudes and fpecific gravities.

For (by Def. 3. and 11.) the denfities of bodies are as their fpecific gravities.
PROP. II.

Tbe quantities of motion in all moving bodies, are in the compound ratio of the quantities of matter and the velocities.

For if the velocities be equal, the quantities of motion will manifeftly be as the quantities of matter. Increafe the velocity in any ratio, and the quantity of motion will be increafed in the fame quantities of motion are in the compound ratio of the velocities and quantities of matter.

Cor. Hence if the body be the fame, the motion is as the velocily. And if the velocity be the Same, the motion is as the body or quantity of matter.

PROP. III.

In all bodies moving uniformly, the fpaces defcribed, are in the compound ratio of the velocittes and the times of their defrription.

For in any moving body, the greater the velocity, the greater is the fpace defcribed; that is, the fpace will be as the velocity. And in twice or thrice the time, \&c. the fpace will be twice or thrice as great; that is, the fpace will be increafed in proportion to the time. Therefore univerfally the fpace is in the compound ratio of the velocity, and the time of defcription.

Cor. I. The time of defcribing any fpace, is as the Space directly and velocity reciprocally; or as the Space divided by the velocity. And if the velocity be the Same, the time is as the Space. And if the Space be the Same, the time is reciprocally as the velocity.

Cor. 2. The velocity of a moving body, is as the Space directly, and time reciprocally; or as the Space divided by the time. And if the time be the fame, the velocity is as the fpace defrribed. And if the Space be the fame, the velocity is reciprocally as the time of deforietion.

PROP. IV.

The motion generated by any momentary force, or by a fingle impulfe, is as the force that generates it.

For if any force generates any quantity of motlon; double the force will produce double the motion; and treble the force, treble the motion, and fo on If a body ftriking another, gives it any motion, twice that body ftriking the fame, with the fame velocity, will give it twice the motion, and fo the motion generated in the other will be as the force of percuffion.

Cor. 1. Hence the forces are in the compound ratio of the velocities and quantities of matter.

For (Prop. II.) the motions are as the quantities of matter multiplied by the velocities.

Cor. 2. The velocity generated, is as the force direcily, and quantity of matter reciprocally. Therefore if the bodies are equal, the velocities are as the forces. And if the forces are equal, the velocities are reciprocally as the bodies.

Cor. 3. The quantity of matter, is as the force direitly, and velocity recip: ocally. And therefore if the ve'ocities be equal, the bodies are as the forces. And if the forces be equal, the bodies are reciprocally as the velocities.
P R O P. V.

The quantity of motion generated, by a conftant and uniform force, is in the compound ratio of the force and time of aEing.

For the motion generated in any given time will be proportional to the force that generates it ; the whole time of acting.

Cor. I. The motion lof in any time, is in the compound ratio of the force and time.

Cor. 2. The velocity generated (or deftroyed) in any time, is as the force and time direcily, and quantity of matter reciprocally. The fame is true of the increafe or decreaje of velocity.

For the motion, that is (Prop. II.) the body multiplied by the velocity, is as the force and time. And therefore the velocity is as the force and time directly, and the body reciprocally.

Cor. 3. Hence if the force be as the quantity of matter, the velocity is as the time. Or if the force and quantity of matter be given, the velocity is as the time.

And if the time and quantity of matter be given, the velocity is as the force.

And if the force and time be given, the velocity is reciprocally as the matter.

Cor. 4. The time is as the quantity of matler and velocitydireElly, and the force reciprocally. Therefore,

If the force and velocity be given, the time is as the quantity of matter.

If the quantity of matter and velocity be given, the time is reciprocally as the force.

Cor. 5. The force is as the quantity of matter and velocity directly, and the time reciprocally. Whence,

If the velocity is at the time, or if the velocity and t ime be given, then the force is as the quantity of matter.

Sect. I. OF MOTION.
And if the velocity and quantity of matter be given, the force is reciprocally as the time.

Cor. 6. The quantity of matter is as the force and time directly, and the velocity reciprocally. Therefore, if the force and time be given, the quanitity of matter is reciprocally as the velocity.

Cor. 7. Hence alfo if the body be given, the velocity is in the compound ratio of the force and time.

And if the force be given, the time is in the compound ratio of the matter and velocity, or as the quantity of motion.

> P R O P. VI.

If a given body is urged by a conftant and uniform force; the fpace defcribed by the body from the beginning of the motion, will be as the force and Square of the time.

Suppofe the time divided into an infinite number of equal parts or moments. Then in each of thefe moments of time, the fpace defcribed (Prop. III. Cor. 2.) will be as the velocity gained; that is, (by Cor. 7. Prop. V.) as the force and time from the beginning. And the fum of all the fpaces, or the whole fpace defcribed, will be as the force and the fum of all the moments of time from the beginning. 'Therefore put $t=$ the whole time, and the whole fpace defcribed will be as the force and fum of the times $1,2,3,4,8 c$. to t. But the fum of the arithmetic progreffion $1+2+3+4$ \ldots. to $t=\frac{t+1}{2} \times t=\frac{1}{2} t t$, becaufe t is infinite or confifts of an infinite number of moments. Therefore the whole fpace defcribed will be as the force and $\frac{1}{2} t t$; that is, (becaufe $\frac{1}{2}$ is a given quantity). as the force and the fquare of the time of defcription.

Cor. I. If a body is impelled by a conftant and uniform force; the space defcribed from the beginning of the motion, is as the velocity gained, and the time of moving.

For the fpace is as the force and fquare of the time, or as the force x time x time. But (Cor. 7 . Prop. V.) the force x time is as the velocity; therefore the fpace which is as the force x time x time, is as the velocity \times time.

Cor. 2. If a body urged by any conftant and uniform force, defcribes any fpace; it will defcribe twice tbat Jpace in the fame time, by the velocity acquired.

For the fum of all the fpaces defcribed by that force, $1+2+3 \& c$. to t, was fhewn to be $\frac{1}{2} t t$. But the fum of all the fpaces defcribed by the laft velocity, will be $t+t+t \& \mathrm{c}$. to t terms, whofe fum is $t t$. But $t t$ is double to $\frac{1}{2} t t$; that is, the fpace defcribed by the laft velocity, is double the fpace defrribed by the accelerating force.

Cor. 3. Univerfally in all bodies urged by any conftant and uniform forces; the fpace defrribed is as the force and Square of the time directly, and the quantity of matter reciprocally.
For (Cor 1.) the fpace is as the time and velocity. But (Prop V. Cor 2.) the velocity is univerfally as the force and time directly, and quantity of matter reciprocaily. Therefore the fpace is as the fquare of the time and the force directly, and matter reciprocally; whence,

Cor. 4. The product of the force, and Square of the time, is as the product of the body and space defcribed.

Cor. 5. The product of the force and time, is as the product of the quantity of matter and velocity.

For (Prop. V.) the product of the force and time,

Sect. I. OF MOTION.
time, is as the motion; that is, as the body and Fig. velocity.

Cor. 6. The product of the body, and Square of the velocity, is as the product of the force and the space defcribed.

For (Cor. 5.) the product of the body and velocity, is as the force and time. Therefore, the body \times velocity fquare, is as the force \times time x velocity; but time x velocity is as the fpace (by Prop. III.) ; therefore body \times velocity fquare is as the force \times fpace.

Scholivim.

If any quantity or quantities are given, they muft be left out. And fuch. quantities as are proportional to each other muft be left out. For example, if the quantity of matter be always the fame; then (Cor. 3.) the fpace defcribed is as the force and fquare of the time. And if the matter be proportional to the force, as all bodies are in refpect to their gravity; then (Cor. 6.) the fpace defcribed is as the fquare of the velocity. Or if the fpace defcribed be always proportional to the body; then (Cor. 6.) the force is as the fquare of the velocity. Again, if the body be given, then (Cor. 4.) the fpace is as the force and fquare of the time. And if both the quantity of matter and the force be given, the fpace defcribed is as the fquare of the time. And fo of others.

PROP. VII.

If ABCD be a parallelogram; and if a body at A, be acted upon feparately by two forces, in the directions AB and AC , which would caufe the body to be carried tbro' the fpaces AB, AC in the fame time. Then both forces aciing at once, will caufe the body to be carried 'bro' the diagonal AD of the parallelogram.

Let the line $A C$ be fuppofed to move parallel to itfelf;

Fig. itfelf; whillt the body at the fame time moves

1. from A, along the line $A C$ or $b g$, and comes to d at the fame inftant, that AC comes to bg. Then fince the lines $A B, A C$, are defcribed in the fame time; and $A b, A d$, are alfo defcribed in the fame time. Therefore, as the motions are uniform, it will be, $\mathrm{Ab}: b d:: A B: \mathrm{BD}$; and therefore AdD is a ftreight line, coinciding with the diagonal of the parallelogram.

Cor. 1. The three forces in the directions A B, AC, AD , are respectively as the lines $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$.

Cor. 2. Any fingle force AD denoted by the diagonal of a parallelogram, is equivalent to two for ces denoted by the fides $A B, A C$.

Cor. 3. And therefore any fingle force AD may be refolved into two forces, an infinite number of ways, by drawing any two lines AB, BD, for their quantities and direetions.

Scholium.

This practice of finding two forces equivalent to one, or dividing one force into two; is called the compofition and refolution of forces.

PROP. VIII.

If tbree forces $\mathrm{A}, \mathrm{B}, \mathrm{C}$, keep one another in equilibrio; they will be proportional to tbree fides of a triangle, drawn parallel to their. Several directions, DI, CI, CD.

Produce $A D$ to I, and $B D$ to H, and compleat the parallelogram DICH; then (Prop. VII.) the force in direction DC, is equal to the forces DH, DI, in the directions DH, DI. Take away the force DC and putting the forces DH, DI equal thereto;
thereto; and the equilibrium will ftill remain. Fig. Therefore (Ax. 10.) DI is equal to the force A op- 2 . pofite to it ; and DH or CI equal to its oppofite force B. And as $C D$ reprefents the force C, the three forces A, B, and C will be to one another as DI, CI, and CD.

Cor. 1. Hence if tbree forces acting againft one anotber, keep each otber in equilibrio; thefe forces will be refpectively as the three fides of a triangle drawn perpendicular to their lines of direction; or making any given angle with tbem, on the fame fide.

For this triangle will be fimilar to a triangle whofe fides are parallel to the lines of direction.

Cor. 2. If tbree active forces $\mathrm{A}, \mathrm{B}, \mathrm{C}$ keep one another in equilibrio; they will be refpectively as the fines of the angles, whicb their lines of direction pa/s tbrough.

For A, B, C are as DI, Cl, CD; that is, as S.DCI, S.CDI, and S.DIC. ButS.DCI = S.CDH $=$ S.CDB. And.S.CDI $=$ S.CDA. Alfo S.DIC $=S . B D I=S . B D A$.

Cor. 3. If ever so many forces afting againft one anotber, are kept in equilibrio, by thefe actions; they may be all reduced to tivo equal and oppofite ones.

Forany two forces may, by compolition, bereduced to one force acting in the lame plane. And this laft force, and any other, may likewife be reduced to one force acting in the plane of thefe; and fo on, till they all be reduced at laft to the action of two equal and oppofite ones.
P R O P. IX.

If a body impinges or aEts againft any plain furface; it exerts its force in a line perpendicular to that furface.

Let the body A moving in direction $A B$, with a given velocity, impinge on the fmooth plain FG at the

Fig. the point B. Draw AC parallel, and BC perpen3. dicular to $F G$; and let $A B$ reprefent the force of the moving body. The force $A B$ is, by the refolution of forces, equivalent to $A C$ and $C B$. The force $A C$ is parallel to the plain, and therefore has no effect upon it; and therefore the furface FG is only acted upon by the force CB , in a direction perpendicular to the furface FG.

Cor. 1. If a body impinges upon another body with a given velocity; the quantity of the Atroke is as the Sine of the angle of incidence.

For the abfolute force is $A B$, and the force acting on the furface FG is CB . \cdot But $\mathrm{AB}: \mathrm{CB}:$: rad: S.CAB or ABF.

Cor. 2. If an elaftic body A impinges upon a bard or elaftic plane FG; the angle of reflexion will be equal to the angle of incidence.
For if AD be parallel to FG ; the motion of A in direction AD parallel to the plane, is not at all changed by the ftroke. And by the elafticity of one or both bodies, the body A is reflected back to AD in the fame time it moved from A to B ; let it pafs to D; then will $A C=C D$, being defrribed in equal times; confequently the angle $\mathrm{ABC}=$ angle CBD; and therefore the angle $\mathrm{DBG}=$ angle ABF .

Cor. 3. If a non-elaffic body frikes another nonelaffic body; it lofes but balf the motion, that it would lofe, if the bodies were elaftic.
For non-elaftic bodies only ftop, without recedeing from one another; but elaftic bodies recede with the fame velocity.

PROP.

PROP. X.

The fum of the motions of two or more bodies, in any direction towards the fame part, camot be changed by anj altion of the bodies upon each otber.

Here I reckon progreffive motions affirmative; and regreffive ones negative, and to be deducted out of the reft to get the fum.
I. If two bodies move the fame way; fince action and re-action are equal and contrary, what one body gains the other lofes; and the fum remains the fame as before. And the cafe is the fame, if there were more bodies.
2. If bodies ftrike one another obliquely; they will act on one another in a line perpendicular to the furface acted on. And therefore by the law of action and re-action there is no change made in that direction.
3. And in a direction parallel to the ftriking furface, there is no action of the bodies, therefore the motion remains the fame in that direction. Whence the motions will remain the fame in any one line of direction.

Cor. 1. Motion can neitber be increafed nor decreafed, confidered in any one direction; but muft romain invariably the fame for ever.

This follows plainly from this Prop. for what motion is gained to one (by addition), is loft to another body (by fubtraction); and fo the total fum remains the fame as befure.

Scholium.

This Prop. does not include or meddle with fuch motions. as are eftimated in all directions. For upon this fuppofition, motion may be increafed or decreafed

Fig. decreafed an infinite number of ways. For example, if two equal and non-elaftic bodies, with equal velocities, meet one another; both their motions are deftroyed by the ftroke. Here at the beginning of the motion, they had both of them a certain quantity of motion, but to be taken in contrary directions; but after the ftroke they had none.
P R O P. XI.

The motion of bodies included in a given Space, is the fame, whetber tbat fpace ftands ftill; or moves uniformly in a rigbt line.

For if a body be moving in a right line, and any force be equally impreffed both upon the body and the line it moves in; this will make no alteration in the motion of the body along the right line. And for the fame reafon, the motions of any number of bodies in their feveral directions will ftill remain the fame; and their motions among themfelves will continue the fame, whether theincluding fpace is at reft, or moves uniformly forward. And fince the motions of the bodies among themfelves; that is, their relative motions remain the fame, whether the fpace including them be at reft, or has any uniform motion. Therefore their mutual actions upon one another, mult alfo remain the fame in both cafes.

S E C T. II.

The perpendiculur defcent of beavy bodies, their defcent upon inclined Dlaves, and in Curve Surfaces. The Mision of Pendulums.

PROP. XII.

\boldsymbol{T}^{H} E velocities of bodies, falling freely by their own weight, are as the times of their falling from rejt.

For fince the force of gravity is the fame in all places near the earth's furface (by roft. s.), and this is the force by which bodies defcend. Therefore the falling body is urged by a force which acts conftantly and equally; and therefore (by Cor. 3 . Prop. V.) the velocity generated in the falling body in any time, is as the time of falling.

Cor. I. If a body be tbrown diresily upwards with the.fame velocity it falls with; it will lofe all its motion in the fame time.

For the fame active force will deftroy as much motion in any time, as it can generate in the fame time.

Cor. 2. Bodies defcending or afcending gain or lofe equal velocities in equal times.

P R O P. XIII.

In bodies falling freely by their own weigbt; the fpaces defcribed in falling from reft, are as the fquares of the times of falling.

For fince gravity is fuppofed to be the fame in all places near the earth. Therefore the falling C body

$18 \quad$ F ALLING BODIES.

Fig. body will be acted on by a force which is conftantly the fame; and therefore (by Prop. VI.) the fpaces defcribed, from the beginning of the motion, or fince their falling from reft, will be as the fquares of the times of falling.

Cor. I. The fpaces defcribed by falling bodies are as the fquares of the velocities.
For (Prop. XII.) the velocities are as the times of falling.

Cor. 2. The Spaces defcribed by falling bodies, are in the compound ratio of the times, and the velocities acquired by falling.

Cor. 3. If a body falls througb any space, and move afterwards with the velocity gained in falling; it will defcribe trice that fpace in the time of its falling.

Cor. 4. A body projefted upward with the velocity it gained in falling, will afcend to the fame beigbt it fell from.

Scholium.

All thefe things would be true if it was not for the refiftance of the air, which will retard their motion a little. In very fwift motions, the refiftance of the air has a very great effect in deftroying the motions of bodies.

P K O P. XIV.

4. If a beary body W be fufained upon an inclined plane AC , by a power F acting in direztion WF parallel to the plane; and if AB be parallel to the borizon and BC perp. to it. Then if the length AC denotes the weight of the body, the bight CB will denote the power at F which fuftains it, and the bafe AB the preffure againgt the plane.

Draw BD perpendicular to $A C$, then $C B$ will be the direction of gravity, DC parallel to WF will be

Sect. II. INCLINED PLANES.
be the direction of the force at F, and $D B$ the di- Fig rection of the preffure (by Prop. IX.). Therefore (by Prop. VIII.) the weight of the body, the power at F , and the preffure; will be refpectively as BC, CD and DB . But the triangles $\mathrm{ABC}, \mathrm{BDC}$ are fimilar, and therefore BC, CD and DB are refpectively as $A C, C B$ and BA. Therefore the weight, power and preffure, are as the lines $A C$, $C B$ and $A B$.

Cor. I. The weight of the body, the power F that fuftains it on the plane, and the preffure againft the plane; are refpecitively as radius, the fine and cofine of the planes elevation above the horizon.

For $A C, C B$ and $A B$ are to one another, as radius, fine of $C A B$, and fine of $A C B$.

Cor. 2. The power that urges a body W down the inclined plane is $=\frac{\mathrm{CB}}{\mathrm{AC}} \times$ weight of W . Hence,

Cor. 3. If a prifmatic body whofe length is AC lie upon the inclined plane AC ; it is urged down the plane with a force equal to the weight of the prifm of the length CB.

Cor. 4. If there be two planes of the fame bight, and two bodies be laid on them proportional to the lengths of thefe planes; the tendency down the planes will be equal in both bodies.
PR O P. XV.

If AC be an inclined plane, AB the borizon, BC perp. to AB. And if W be a beary body upin the plane, which is kept there by the power P aciing in direction WP. Draw BDE perp. to WP. Then the weight W , the powver P , the preflure againft the plane; will be refpeciively as AB, DB and AD .

For $A B$ being a horizontal plane is perpendicuJar to the action of $\underset{C_{2}}{\text { gravity } ; ~ a n d ~} B D$ is perp. to

Fig. the direction of the power P; and $A D$ is the 5. plane, which is perp. to the direction of the preffure againft that plane. Therefore (Cor. 1. Prop. VIII.) the weight of the body, the power P, and the preffure; are as $A B, R D$ and $A D$. And if the direction of the power WP be under the plane, the proportion will be the fame, as long as BD is perpendicular to WP.

Cor. 1. The weight of the body W , is to the power P that fuftains it:: as cofine of the angle of traction CWP : to the fine of the plane's elevation CAB .

For the weight : power : : AB : BD : : S.ADB or WDE : S.BAD : : cof DWE or CWP : S.BAC, where the angle CWP made by the plane and direction of the power is called the angle of Traction.

Cor. 2. Hence it is the fame thing as to the power and weight, whether the line of direction is above or below the plane, provided the angle of traction be the fame. For an equal power will fuftain the weight in both cafes.

Cor. 3. The weight of the body: is to the preflure egainft the plane: : as the cofine of the angle of traction CWP : to the cofine of BNP , the direction of the power above the borizon.

For the weight $\mathrm{W}:$ preffure $:: \mathrm{AB}: \mathrm{AD}::$ S.ADB : S.ABD : : S.ADE : : S.NBE : : cof. EWD or PWC : cof. BNP.

Cor. 4. Hence the preffure againf the plane is greater when the direction of the power is below the plane, the weight remaining the fame.

Scholium.

Altho' the power has the fame proportion to the weight, when the angle of traction is the fame; whether the direction of the power be above or below
below the plane. Yet, fince the preffure upon the Fig plane is greater, when the line of direction is be- 5 . low the plane. Therefore in practice, when a weight is to be drawn up hill, if it is to be done by a power whofe direction is below the plane, the greater preffure in this cafe will make the carriage fink deeper into the earth, $\& c$. and for that reafon will require a greater power to draw it up, than when the line of direction is above the plane.

P R O P. XVI.

If a weight W upon an inclined plane AC , be in 6. equilibrio with anotber weight P banging freely; then if they be fet a moving, tbeir perpendicular velocities in that place; will be reciprocally as their quantities of matter.

Take WA a very fmall line upon the plane AC; draw $A B$ parallel to the horizon, and $B C$ perp to it Draw AF, and WR, BE perpendicular to it; and WT, DV perp. to AB. Let W defcend thro' the fimall line WA upon the plane, then P will afcend a hight equal to AR perpendicularly; and WT will be the perpendicular defcent of W . The triangles AWR and ADE are fimilar ; and likewife the triangles AWT and ADV. Therefore WT : DV : : AW : : WD : : WR : DE. And alternately, WT : WR : : DV : DE; and WR : $\mathrm{AR}:: \mathrm{DE}: \mathrm{AE}$; therefore WT : AR : : DV : $\mathrm{AE}:$: (by the fimilar triangles DBV and AEB) DB : AB : : (Prop. XV.) power P : weight W .

Cor. 1. If any two bodies be in equilibrio upon two inclined planes; their perpendicular velocities will be reciprocally as the bodies.

Cor. 2. If two lodies fuftain each other in equilibrio, on any planes; the product of one body \times by its C 3

Fig. perp. velocity, is equal to the product of the other bo6. dy \times by its perp. velocity.

P•R O P. XVII.

7. If a beary body runs down an inclined plane CA; the velocity it acquires in any time, moving from reft; is to the velocity acquired by a body falling perpendicularly in the fame time; as the bigbt of the plane CB, to its length CA.

The force by which a body endeavours to defcend on an inclined plane, is to its weight or the force of gràvity ; as CB to CA (by Prop. XIV.). And as thefe forces always remain the fame, therefore (Cor. 2. Prop. V.) the velocities generated will be as thefe forces, and the times of acting, directly; and the bodies rec:procally. And fince the times of acting, and the bodies are the fame in both cafes, the velocities generated will be as thefe forces; that is, as the hight of the plane $C B$ to its length CA.

Cor. 1. The velocity acquired by a body running down an inclined plane, is as the time of its moving from reft.

Cor. 2. If a body is tbrown up an inclined plane, witb the velocity it acquired in defcending; it will lofe all its motion in the fame time.

PROP. XVIII.

7. If a beavy body defcends down an inclined plane Ca; the fpace it defiribes from the beginning of the motion, is to the fpace deforibed by a body falling perpendiculcrly in the fame time; as the bight of the plane CB, to its lengtb CA.

For the force urging the body down the plane is to the force of its gravity, as CB to CA (by Prop.
XIV.), which forces remain conftantly the fame. Fig. And fince (Prop. XVII.) the velocities generated 7 in equal times on the plane, and in the perpendicular, are contantly as CB to CA; the fmall particles of fpace defcribed with thefe velocities, in all the infinitely fmall portions of time, will ftill be in the fame ratio; and therefore the fums of all thefe fmall fpaces, or the whole fpaces defribed from the beginning, will be in the fame conftant ratio of CB to CA.

Cor. 1. The fpace defcribed by a body falling down an inclined plane, in a given time, is as the fine of the plane's elevation.

For if CB be given, and alfo the perp. defcent; that fpace will be reciprocally as CA, or directly as S.CAB.

Cor. 2. The Spaces defcribed by a body deferting from reft, down an inclined plane, are as the Squares of the times.

Cor. 3. If BD be drawn perp. to the plane CA ; then in the time a body falls perpendicularly tbro' the bight CB , another body will defcend tbro' the fpace CD upon the plane.

For by fimilar triangles $C A: C B: ~ C B: C D$.
P R O P. XIX.

If AC is an inclined plane, the time. of a body's defcending tbro' the plane CA, is to the time of falling perpendicularly thro' the bight of the plane CB , as the length of the plane CA to the bight CB.

For if BD is perp. to CA, then (Cor. 2. Prop. XVIII.) fpace CD : fpace CA : : fquare of the time in CD : fquare of the time in $\mathrm{CA}:$: that is, as the fquare of the time of defcending perpendiC 4
cuiarly

Fig. cularly in CB (Cor 3. laft): fquare of the time in 7. CA. Fut CD : CA : : $\mathrm{CB}^{2}: \mathrm{CA}^{2}$. Therefore $C B^{2}: C A^{2}$: quare of the time in $C B:$ fquare of the tine in CA. And CB: CA : : time in CB : the in $C A$.

Cor. 1. If a body be tbrown upreards on the plane with the velucity acquaied in defcending; it will in an eaval time afcenad to the fame light.

Cor. 2 The times wherein different planes, of the fame bigbt, are paljed over; are as the lengths of the pines.

Let the planes be CA, CF. Then time in $A C$: time in $C B:: C A: C B$. And the time in $C B$: t me in $\mathrm{CF}:: \mathrm{CB}: \mathrm{CF}$. Therefore ex equo, time in $A C$: time in $C F:: C A: C F$.

PROP. XX.

8. If a body falls down an inclined plane, it acquires the fame rellcity as a body falling perpendicularly tbro the kight of the plane.

Let the body run down the plane CA whofe hight is $C R$. Draw DF parallel to $A B$, and infinitely near it. Then the velocities in DA and FB , may be looked upon as uniform. Now (Prop. XIX.) the times of defcribing CA and CB, will be as $C A$ and $C B$. Likewite the times of defrribing $C D$ and CF, will be as CD and CF; that is, as CA and CE. And by divifion, the difference of the times, or the times of defcribing $D A$ and $F B$, will allo be as CA and CB ; that is, as DA and FB. But (from Prop. III.) the velocities are equal when the fpaces are as the times of defcription. Therefore velocity at A is equal to the velocity
at B.

Cor.

Cor. 1. The velosities acquired, by bodies defcend. Fig, ing on any planes, from the fame bight to the fame bo- 8. rizontal line, are equal.

Cor. 2. If the velocities be equal at any two equal altitudes D, F; they will be equal at all otber equal altitudes A, B.

Cor. 3. Hence alfo, if feveral bodies be moving in different direetions, tbro' any space contained between two parallel planes; and be aEted on by any force, which is equal at equal diftances from either plane. Then if their velocities be equal at entering that Space; they will alfo be equal at emerging out of it.

For dividing that fpace into infinitely fmall parts by parallel planes. Then the force between any two planes may be fuppofed uniform ; and fuppoling $D F, A B$ to reprefent two of thefe planes, then (by Cor. 2.) the velocities at D and F being equal; the velocities at A and B will be equal; that is, the velocities at entering the firft part of face being equal, the velocities at emerging out of it, or at entering the fecond fpace will be equal. And for the fame reafon the velocities at entering the fecond fpace being equal, thofe at emerging out of it into the third, will be equal. And confequently the velocities at entering into, and emerging out of the third, fourth, fifth, \&c. to the laft will be equal refpectively.

P R O P. XXI.

If a body falls from the fame bight, thro' any 9. number of contiguous planes. $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$; it will at laft gain the fame velocity as a body falling perpendicularly from the fame bight.

Let FH be a horizontal line, FD perp. to it. Produce the planes $B C, D C$ to G and H. Then (Cor.

Fig. (Cor. 1. Prop. XX.) the velocity at B is the fame 9. whether the body defcend thro' AB or GB. And therefore the velocity at C will be the fame, whether the body defcends thro' ABC or thro' GC, and this is the fame as if it had defcended thro' HC. And confequently it will have the fame velocity at D , in defcending thro' the planes ABCD , as in defcending thro' the plane HD; that is, (Prop. XX.) as it has in defcending thro' the perpendicular FD.

Cor. 1. Hence a body defeending along any curve furface, will acquire the fame velocity, as if it fell perpendicularly tbro' the fame bight.

For let the number of planes be increafed, and their length diminifhed ad infinitum, and then ABCD will become a curve. And the velocity acquired by defcending thro' thefe infinite planes; that is, thro' the curve ABCD , will be the fame as in falling perpendicularly thro' FD.

Cor. 2. If a body defcends in a curve, and another defcends perpendicularly from the fame bight. Their velocities will be equal at all equal altitudes.

Cor. 3. If a body, after its defcent in a curve, should be diretted upwards with the velocity it bad gained; it will afcend to the fame bigbt from which it fell.

For fince gravity acts with the fame force whether the body afcends or defcends, it will deftroy the velocity in the afcent, in the fame time it did generate it in the defcent.

Cor. 4. The velocity of a body defcending in any curve, is as the Square root of the bight fallen from.

For it is the fame as in falling perpendicularly; and in falling perpendicularly, it is as the fquare root of the hight.

Cor.

Cor. 5. If a body, in moving tbro' any space ED, Fig. be acted on uniformly by any force; its velocity at 9. emerging out of it at D , will be equal to the fquare root of the fum of the fquares of the velocity at E in entering of it, and of the velocity acquired in falling from reft thro' that fpace ED. And this bolds whether the body moves perpendicularly or obliquely.

For let the body enter the fpace ED at E, with the velocity acquired in falling thro' FE. Then (Prop. XIII. Cor. I.) the fquare of the velocity at E will be as FE ; and the fquare of the velocity at D , as FD ; and the fquare of the velocity at I) falling from E, will be as ED. But $F D=F E$ +ED ; therefore the fquare of the velocity at D (falling thro' $F D$) = fquare of the velocity at $E+$ fquare of the velocity at D (falling thro' $E D$). And (Cor. I. of this Prop.) the velocity will be the fame whether the body defcends perpendicularly or obliquely.

P R O P. XXII.

The times of bodies defcending thro' two fimilar 10. parts of fimilar curves, placed alike, are as the Square roots of their lengtbs.

Let $A B C D$ and $a b c d$ be two fimilar curves, and fuppofe $B C$ and $b c$ to be infinitely fmall, and fimilar to the whole; that is, fo that $\mathrm{BC}: b c:: \mathrm{AB}$: $a b$. Draw FA parallel to the horizon, and HB , $b b$ perp. to it. Then if two bodies defcend from A and a (Cor. 4. Prop. XXI.) the velocities at B and b will be as $\sqrt{ } \mathrm{HB}$ and $\sqrt{ } b b$; that is, as $\sqrt{ } \mathrm{AB}$ and $\sqrt{ } a b$, becaufe $\mathrm{AB}, a b$ are fimilar parts. Therefore (Prop. III. Cor. I.) the times of defcribing $B C$ and $b c$, are as $\frac{B C}{\sqrt{\mathrm{AB}}}$ and $\frac{b c}{\sqrt{ } a b}$; thatis,

Fig. as $\frac{\mathrm{AB}}{\sqrt{\mathrm{AB}}}$ and $\frac{a b}{\sqrt{ } a b}$ or as $\sqrt{\mathrm{AB}}$ and $\sqrt{ } a b$; that is, as $\sqrt{ } \mathrm{AD}$ and $\sqrt{ }$ ad, becaufe the curves are fimilarly divided in B and b. After the fame manner the times of defcribing any other two fimilar parts as $\mathrm{BC}, b c$, will be as $\sqrt{ } \mathrm{AD}$ and $\sqrt{ }$ ad. Therefore by compofition the times of defcribing all the BC's, and all the $b c$'s will be as $\sqrt{ } A D$ and $\sqrt{ }$ ad. That is, the time of detcribing the curve AD to the time of defcribing the curve $a d$, is as $\sqrt{ } \mathrm{AD}$ to \checkmark ad.
Cor. If two bodies defcend tbro' two fimilar curves ABD , and abd; the axes of the curves FD, Fd are as the fquares of the times of their defcend.ng.
For $\sqrt{\mathrm{FD}}: \sqrt{\mathrm{Fd}}:: \sqrt{\mathrm{AD}}: \sqrt{\text { ad }}::$ time of defcending thro' ABD : time of defcending thro' abd. And FD, Fd, are as the fquares of the times.

PROP. XXIII.

A body will defcend tbro' any chord of a circle, in
1: the fame time that anctber defcends perpendicularly tbro the diameter.

Draw the diameter $A B$ perpendicular to the horizon, and the cords CA, CB. Then fince BC is perpendicular to AC, therefore (Prop. XVIII. Cor. 3.) the time of defcending thro' the cord AC is equal to the time of falling thro' AB.

Draw CD parallel to $A B$, and $D B$ parallel to $C A$, then is $C D$ equal to $A B$. And by reafon of the parallels, the angle $\mathrm{DBC}=$ angle $\mathrm{BCA}=\mathrm{a}$ right angle. Then fince DB is perp. to CB , therefore (Cor. 3.Prop. XVIII.) a body will defcend thro' the inclined plane CB , in the fame time that another falls thro' ${ }^{\mathrm{C}} \mathrm{CD}$, or which is the fame thing, thro' its equal AB.

Sect. II. INCLINED PLANES.
Cor. I. Hence the times of defcending tbro' all the Fig. cords of a circle drawn from A or B , are equal 11. among themfelves.

Cor. 2. The velocity gained by falling tbro' the cord CB , is as its lengtb CB .

For the velocity gained in falling thro' CB is the fame as is gained by falling thro' EB; and that velocity is to the velocity gained by falling thro' $A B$, as $\sqrt{ } B E$ to $\sqrt{A B}$ (by (or. i. Prop. XIII.); that is, as BC to BA. Therefore if the given velocity in falling down $A B$ be reprefented by $A B$. The velocity gained in falling down $C B$ will be reprefented by CB ; and fo that in any other cord, by its length.

PROP. XXIV.

If a pendulum vibrates in the fmall arch of a circle; the time of one vibration, is to the time of a body's falling perpendicularly thro' balf the length of the pendulum; as the circumference of a circle, to the diameter.

If a pendulum fufpended by a thread, \&c. be made to vibrate in any curve; it is the fame thing as if it defcended down a fmooth polifhed body made in the form of that curve. For the motions, velocities, and times of moving will be the fame in both.

Let OD or $O E$ be the pendulum vibrating in the $\operatorname{arch} A D C$, whofe radius is OD. Let OD be perp. to the horizon, and take the arch Ee infinitely fmall, and draw ABC, EFG, efg, perp. to OD; and draw the cord AD. About BD defcribe the femicircle BGD. Draw er and Gs perp. to EG.

Put $t=$ time of defcending thro' the diameter ${ }_{2} O D$, or thro' the cord $A D$. Then the velocities gained

Fig. gained by falling thro' 2 OD, and by the pendu12. lum's defcending thro' the arch AE , will be as $\sqrt{2} \mathrm{OD}$ and $\sqrt{\mathrm{BF}}$. And the fpace defcribed in the time t, after the fall thro' 20 DD , is 4 OD. But the times are as the fpaces, divided by the velocities. Therefore, $\frac{4 \mathrm{OD}}{\sqrt{2 O D}}$ or $2 \sqrt{2 O D}: t$ (time of its defcription) : $: \frac{\mathrm{E} e}{\sqrt{\mathrm{BF}}}:$ time of defcribing $\mathrm{E} e=$ $t \times \mathrm{Ee}$
$\frac{}{2 \sqrt{2 \mathrm{OD} \times \mathrm{BF}}}$.
But by the fimilar triangles OEF, Eer; and $\mathrm{KGF}, \mathrm{Ggs}$; we fhall have $\frac{\mathrm{EF}}{\mathrm{OD}} \times \mathrm{E}_{e}=e r=\mathrm{Ff}$ $=\mathrm{G} s=\frac{\mathrm{FG}}{\mathrm{KD}} \times \mathrm{G} g$. Whence $\mathrm{E} \varepsilon=\frac{\mathrm{OD} \times \mathrm{FG}}{\mathrm{KD} \times \frac{\mathrm{EF}}{\mathrm{EF}}} \times$ Gg. Therefore the time of defcribing $E \cdot=$ $t \times \mathrm{OD} \times \mathrm{FG} \times \mathrm{Gg}$
$2 \mathrm{KD} \times \mathrm{EF} \sqrt{\overline{\mathrm{BF} \times{ }^{2 O D}}}=$
$\frac{t \times \mathrm{OD} \times \sqrt{\mathrm{BF} \times \mathrm{FD}} \times \mathrm{Gg}}{2 \mathrm{KD} \sqrt{\mathrm{BF}} \times \sqrt{\mathrm{DO}+\mathrm{OF} \times \mathrm{FD}} \times \sqrt{2 \mathrm{OD}}}=$ $\frac{t \times \sqrt{\mathrm{OD}} \times \mathrm{Gg}}{2 \mathrm{KD} \times \sqrt{\mathrm{DO}+\mathrm{OF}} \times \sqrt{2}}=\frac{t \times \sqrt{2 \mathrm{OD}}}{4 \mathrm{KD} \times \sqrt{\mathrm{DO}+\mathrm{OF}}}$ $\times \mathrm{Gg} .=\frac{t \times \sqrt{2} \mathrm{OD}}{2 \mathrm{BD} \times \sqrt{2 \mathrm{OD}}-\mathrm{DF}} \times \mathrm{G} g$. But DF, in its mean quantity for all the arches $G g$, is nearly equal to DK. Therefore the time of defcribing $\mathrm{E} e=\frac{t \times \sqrt{2 \mathrm{OD}}}{2 \mathrm{BD} \sqrt{2 \mathrm{OD}-\mathrm{DK}}} \times \mathrm{G} g$. Whence the time
of defcribing the arch $\mathrm{AED}=\frac{t \times \sqrt{2 O D}}{2 \mathrm{BD} \sqrt{2 O D-D K}}$ $\times \mathrm{BGD}$. And the time of defcribing the whole arch ADC , or the tinte, of qne ofcillation is $=$
$t \times \sqrt{2 O D}=\sqrt{2 B G D}$. But when the arch 12. $2 \overline{\mathrm{BD} \sqrt{2 O D-D K}}$
$A D C$ is exceeding fmall, $D K$ vanifhes, and then the time of ofcillation in a very fmall arch is = $\frac{t \times \sqrt{2 \mathrm{OD}}}{2 \mathrm{BD} \sqrt{2 \mathrm{OD}}} \times{ }_{2} \mathrm{BGD}=\frac{1}{2} t \times \frac{2 \mathrm{BGD}}{\mathrm{BD}}$. But if t be the time of defcending thro' ${ }_{2} \mathrm{OD}, \frac{3}{2} t$ is the time of defcending thro $\frac{1}{2}$ OD. And therefore BD the diameter, 1 t to ${ }_{2} \mathrm{BGD}$ the circumference; as the time of falling thro' half the length of the pendulum, to the time of one vibration.

Cor. I. In a fmall arch AED, the time of defcending tbro' the cord AD , is to the time of defcending thro' the arch AED; as the diameter BD , to $\frac{1}{4}$ the circumference.
For the time of defcending thro' the arch AED $=t \times \frac{\mathrm{BGD}}{2 \mathrm{BD}}$; therefore $\mathrm{BD}: \frac{1}{2} \mathrm{BGD}:: t:$ time in AED.

Cor. 2. All the vibrations of the fame pendulum, in arcbes not very large, are performed nearly in the fame time.

Cor. 3. If KD be biffected in L , and T be $=$ time of vibration in a very finall arch. Then $\mathrm{T}+$ KL
 arch ADC , nearly.

For we found the time of vibration in $\mathrm{ADC}=$ $t \times \mathrm{BGD} \quad{ }_{2} \mathrm{OD}$ $\overline{B D} \times \sqrt{\frac{O D}{2 O D}=T \times \sqrt{O D+O K} ; ~}$ and the three lines $\mathrm{DO}+\mathrm{OK}, \mathrm{DO}+\mathrm{OL}$, and $\mathrm{DO}+\mathrm{OD}$ are in arithmetical progreflion; but fince KD is very finall, they are nearly in geometri-

$$
=T \times \frac{D O+O K+K L}{D O+O K}=T+T \times \frac{K L}{D O+O K} .
$$

Cor. 4. Hence a falling body woill defcend tbro' a space of 16 feet, and 1 inch, in a fecond of time.
For by obfervation, a pendulum 39.13 inches long will fwing feconds. And $t \times \frac{\mathrm{BGD}}{\mathrm{BD}}=1 \mathrm{fe}$ cond, and $\frac{\mathrm{BD}}{\mathrm{BGD}}=t$, or $\frac{2}{3.1416}=$ time of falling thro' 2×39.13. Whence (Prop. XIII.) $\frac{4}{3.1416^{2}}$:
$2 \times 39.13:: \mathbf{1}^{2}: \frac{39.13}{2} \times \overline{3.1416^{2}}=193.096$ inches $=16.09$ feet.

PROP. XXV.

The lengtbs of two pendulums, defcribing fimilar arches, are as the fquares of the times of vibration.

For (Prop. XXII.) the times of defcending thro' two fimilar curves, are as the fquare roots of the lengths of the curves; that is, as the fquare roots of the lengths of the pendulum, their centers being alike fituated. Therefore the lengths of the pendulums are as the fquares of the times of vibrating.

Cor. r. The times of vibration of pendulums in fmall arcbes of circles, are as the fquare roots of the lengtbs of the pendulums.

For if the arches are fimilar, the times of vibration are in that proportion. And (Prop. XXIV. Cor.

Sect. II. P E N D U L U M S.
Cor. 2.) if the arches are fmall, tho' not fimilar, Fi the vibrations will be the fame as before.

Cor. 2. The velocity of a pendulum at its loweeft point, is as the cord of the arch it defcends thro'.

For the velocity at the loweft point is equal to the velocity gained in defcending thro' the cord; for they are both of them the fame as a body acquires by falling thro' their common altitude. And (Prop. XXIII. Cor. 2.) the velocity gained in falling thro' the cord, is as the length of the cord. Therefore the velocities of a pendulum in different arches, are in the fame ratio.

PR O P. XXVI.

Pendulums of the fame length vibrate in the fame time, whether they be beavier or lighter.

For let the two pendulums P, p, be of the fame length; they will each of them fall thro' half the length of the pendulum in the fame time. For (Cor. 2. Prop. V.) the velocity generated in any given time, is as the force directiy and matter reciprocally. But in the two pendulums, the forces that generate their motions, are their weights, which are as their quantities of matter. Whence we have the velocity of P , to the velocity of p; as $\frac{\mathrm{P}}{\mathrm{P}}$ to $\frac{p}{p}$, or as t to 1 ; and therefore equal velocities are generated in the fame time. Confequently, equal fpaces will be defcribed in the fame time, and therefore they will fall thro' half the length of one of them in an equal time. And therefore (Prop. XXIV.) thẹir vibrations will be performed in the fame time.

Cor. Hence all bodies whetber greater or leffer, beavier or ligbter, near the eartb's furfice will fall D
rig. tbro' equal spaccs in equal times; abating the reffitance of the air.
Becaufe they are as much retarded by their matter, as accelerated by their weight. The weight and the matter being exactly proportional to one another.

PROP. XXVII.

Tbe lengtbs of pendulun's vibrating in the fame time, in different places of the world, will be as the forces of gravity.

For (by Prop. V. Cor. 2.) the velocity generated in any time is as the force of gravity directly, and the quantity of matter reciprocally. And the matter being fuppofed the fame in both pendulums, the velocity is as the force of gravity; and the fpace paffed thro' in a given time, will be as the velocity; that is, as the gravity. Therefore if any two fpaces be defcended thro' in any time, and two pendulums be made, whofe lengths are double thefe fpaces ; thefe pendulums (by Prop. XXIV.) will vibrate in equal times; therefore the lengths of the pendulums, being as the fpaces fallen thro in equal times, will be as the forces of gravity.

Cor. I-Fibe times wherein pendulums of the fame lendtherwill yibrate, by different forces of gravity; are reciprocally as the fquare roots of the forces.

For (Cor. 2. Prop. V.) when the matter is given, the velocity generated is as the force \times by the time. And (Prop. VI.) the fpace defcended thro' b_{y} any force, is as the force and fquare of the time. Let thefe fpaces be the lengths of the pendulums, then the lengths of the pendulums are as the forces and the fquares of the times of falling thro them. But (Yrop. XXIV.) the times of falling thro' them are in a given ratio to the times of vibration; whence

Sect. II. PENDULUMS.
whence the lengths of pendulums are as the forces Fi and the fquares of the times of vibration; therefore when the lengths are given, the rorces will be reciprocally as the fquares of the times; and the times of vibration reciprocally as the fquare roots of the forces.

Cor. 2. The lengtbs of pendulums in different places, are as the forces of gravity, and the Squares of the times of vibration.

This is proved under Cor. 2. Hence,
Cor. 3. The times wherein pendulums of any length, perform tbeir ofcillations; are as the .Jquare roots of their lengtbs direeily, and the Square roots of the grawitating forces.reciprocally.

Cor. 4. The forces of gravity in different places, are as the lengtbs of pendulums direitly, and the squares of the times of vibration reciprocally.

PROP. XXVIII. Prob.

To find the length of a pendulum, that fball make any number of vibrations in a given time.

Reduce the given time into feconds, then fay, as the fquare of the number of vibrations given : to the fquare of this number of feconds : : fo is 39.13: to the length of the pendulum fought, in inches.

Ex. Suppofe it makes 50 -vibrations in a minute, here a minute is $=60$ feconds; then,

As 2500 (the fquare of 50): 3600 (the fquare of 60) : : $39: 13:$ to the length $=\frac{3600 \times 39.13}{2500}$
$=\frac{140868}{2500}=56.34$ inches, the length required.
D 2
If

PENDULUMS.

If it be required to find a pendulum that fhall vibrate fuch a number of times in a minute; you need only divide 140868, by the fquare of the number of vibrations given, and the quotient will be the length of the pendulum.

This practice is deduced from Prop. XXV. for let p be the length of the pendulum, n the number of vibrations, t the time they are to be performed in. Then $39.13: 1^{2}:: p: \frac{p}{39 \cdot 13}=$ fquare of the time of one vibration, and $\sqrt{ } \frac{p}{39 \cdot 13}=$ time of one vibration; then if t be divided by $\sqrt{ } \frac{p}{39 \cdot 13}$ it will give n; that is, $t \sqrt{ } \frac{39 \cdot 13}{p}=n$, whence $t t \times 39.13=n n p$, and $n n: t t:: 39.13: p$. If the pendulum is a thread with a little ball at it, then the diftance between the point of fufpenfion and the center of the ball is efteemed the length of the pendulum. But if the ball be large, fay as the diftance between the point of fufpenfion, and the center of the ball, is to the pdius of the ball; fo the radius of the ball to a third proportional. Set $\frac{2}{5}$ of this from the center of the ball downward, gives the center of ofcillation. Then the whole diftance from the point of fufpenfion to this center of ofcilation, is the true length of the pendulum. If the bob of the pendulum be not a whole fphere, but a thin fegment of a fphere, as AB , as in moit clocks; then to find the center of ofcillation, fay as the diftance between the point of fufpenfion, and the middle of the bob, is to half the breadth of the bob; fo half the breadth of the bob, to a third proportional. Set one third of this length from the middle of the bob downwards, gives the center of ofcillation. Then the diftance between

Sect. II. P E N D U L U M S.
between the centers of fufpenfion and ofcillation, is Fi the exact length of the pendulum.

P R O P. XXIX. Prob.

Having the length of a pendulum given; to find bow many vibrations it Jball make, in any given time.

Reduce the time given into feconds, and the pendulum's length into inches; then fay, as the given length of the pendulum : to $39.13::$ fo is the fquare of the time given : to the fquare of the number of vibrations, whofe fquare root is the number fought.

Example. Suppofe the length of the pendulum is 56.34 inches, to find how often it will vibrate in a minute.

1 minute $=60$ feconds. Then, 56.34 (the length of the pendulum) : $39.13:: 3600$ (the fquare of 60) : to the fquare of the number of vibrations $=\frac{3600 \times 39.13}{56.34^{4}}=\frac{140868}{56.34}=2500$, and
$\overline{2500}=50=$ the number of vibrations fought.
If the time given be a minute, you need only divide 140868 by the length, and extract the root of the quotient for the number of vibrations.

This is the reverfe of the laft problem, therefore fuppofing as before in that problem, we have $t t \times$ $39.13=n n p ;$ therefore $p: 39: 3:: t t: n n$.

They that would fee a further account of the motions of bodies upon inclined planes, the vibrations of pendulums, and the motion of projectiles; may confult my large book of Mechanics, where they will meet with full fatisfaction.

[3^{8}]

S EC T. III.

Of the Center of Gravity; the equilibrium of beams of timber; the direEtions and quantities of the forces neceffary to fuffain them.

PROP. XXX.

A body cannot descend or fall downwards, except only when it is in such a pofition, that by its motion, its center of gravity defends.
4. Let the body A ftand upon the horizontal plane BK , and let C be its center of gravity; draw CD perpendicular to the plane BK. And let the body be fulpended at the point C, upon the perpendicular line CD. Then (def. 12.) it will remain unmoved upon the line CD. And as $C D$ is perp. to the horizon, it has no inclination to move one way more than another, therefore it will move no way but remain at reft. Take away the line $C D$, and let the body be fupported by the line $B C$; if BC be fixed, the body will remain at reft on the line $C B \quad$ But if $C B$ be movable about B, the body fufpended at C , will endeavour to move with its center of gravity downwards along the arch CE, about B as a center, towards N . And for the fame reafon the body will endeavour to fall the contrary way, moving about the point N; I fay, this will be the cafe when CD is fituated between B and N. But the de wo motions being contrary to one nothen, will hinder each other's effects; and the body will be futtained without falling.

Again,

Sect. III. CENTER OF GRAVITY.

Again, let the body F be fufpended with its cen- F ter of gravity I upon the perpendicular IH. As i this line has no inclination to move to any fide, it will therefore remain at reft. Take away the line IH, and let the center of gravity I be fufpended on the line IG, then the body will endeavour to defcend along the arch $I K$, for the higheft point of the arch is in the perpendicular erected at G . For the fame reafon if the body be fufpended on the line OI, it will endeavour to defcend towards K, about the center O; now as beth thefe motions tend the fame way, and there is nothing to oppofe them; the body mult fall towards K . In both thefe cafes it is plain, that when the center of gravity by its motion, defcends, the body will fall; but if not, the body will be fupported without falling.

Cor. 1. If a body ftands upon a plane, if a line be drawn from the center of gravity perpendicular to the borizon; if this line fall within the bafe on wbich the body ftands, it will be fupported without falling. But if the perpendicular falls witbout the bafe, the body will fall.

For when the perpendicular falls within the bafe, the body can be moved no manner of way, but the center of gravity will rife. And when the perpendicular falls without the bafe, towards any fide; if the body be moved towards that fide, the center of gravity defcends; and therefore the body will fall that way.

Cor. 2. If a perpendicular drawn from the renter of gravity perp. to the borizon, fall wipn the extirmity of the base, the body may ftand, but the leaft force whatever, will cause it to fall that way. And the nearer the perp. is to any fide, the eafier it will be made to fall, or is fooner thrust over. Aind the nearer the perp. is to the middlle of the bafe, the firmer the boaly fands.

CENTER OF GRAVITY.

5. Cor. 3. Hence if the center of gravity of a body be . fupported, the whole body is fupported. And the place of the center of gravity muft be deemed the place of the body; and is always in a line drawn perpendicular to the borizon, tbro' the center of gravity.

Cor. 4. Hence all the natural actions of animals may be accounted for from the properties of the center of gravity.

When a man endeavours to walk, he ftretches out his hind leg, and bends the knee of his fore leg, by which means his body is thruft forward, and the center of gravity of his body is moved forward beyond his feet; then to prevent his falling, he immediately takes up his hind foot, and places it forward beyond the center of gravity; then he thrufts himfelf forward, by his leg which now is the hindmoft, till his center of gravity be beyond his fore foot, and then he fets bis hind foot forward again; and thus he continues walking as long as he pleafes.

In ftanding, a man having his feet clofe together cannot ftand fo firmly, as when they are at fome diftance; for the greater the bafe, the firmer the body will ftand; therefore a globe is eafily moved upon a plane, and a needle cannot ftand upon its point, any otherwife than by fticking it into the plane.

When a man is feated in a chair, he cannot rife till he thrufts his body forward, and draws his feet backward, till the center of gravity of his body be kefore his feet; or at leaft upon them; and to prevent falling forward, he fets one of his feet forward, and then he can ftand, or ftep forward as he pleafes.

All other animals walk by the fame rules; firt fetting one foot forward, that way the center of gravity leans, and then another.

In walking up hill, a man bends his body for- Fig. ward, that the center of gravity may lie forward of his feet; and by that means he prevents his falling backwards.

In carrying a burthen, a man always leans the contrary way that the burthen lies; fo that the center of gravity of the whole of his body and the burthen, may fall upon his feet.

A fowl going over an obftacle, thrufts his head forward, by that means moving the center of gravity of his whole body forwards; fo that by fetting one foot upon the obftacle, he can the more eafily get over it.

P R O P. XXXI.

In any two bodies A, B, the common center of gra--15. vity C , divides the line joining their centers, into two parts, which are reciprocally as the bodies. $\mathrm{AC}: \mathrm{BC}:$: B : A.

Let the line ACB be fuppofed an inflexible lever; and let the lever and bodies be fufpended on the point C . Then let the bodies be made to vibrate about the immovable point \mathcal{C}; then will A and B defcribe two arches of circles about the center C, and thefe arches will be as the velocities of the bodies, and thefe arches are alfo as the radii of the circles AC and BC. Therefore their velocities are as the radii. Whence, velocity of A : velocity of $B: A C: C B: ~: ~(b y ~ f u p p o f i t i o n) ~ B: A . T h e r e-~$ fore $A \times$ velocity of $A=B \times$ velocity of B. Whence (Prop. II.) the quantities of motion of the bodies A and B are equal, and (Ax .9 .) therefore they cannot move one another, but muft remain at reft; and confequently (def. 12.) C is the center of gravity of A and B .

Cor.

CENTER OF GRAVITY.

Fig.
Cor. I. The products of each body multiplied by its 15. $C A \times A=C B \times B$.

Cor 2. If a weight te laid upon C , a point of the inflexible lever AB , which is supported at A and B ; the preffure at A to the prefure at B , will be as CB to CA.

For let the bodies A, B, be both placed in C; then (Cor. 3. Prop. XXX.) fince it is the fame thing whether the bodies be at A and B, or both of them at C, their center of gravity; therefore the preffures at A and B will be the fame in both cafes. But when they are at A and B, upon the lever $A C B$, their preffures ate A and B, being the fame with the weights; therefore when they are both at C , the preffures at A and B will fill be A and B . Therefore (Cor. I.) fince it is $\mathrm{CA} \times \mathrm{A}=\mathrm{CB} \times$ B ; therefore $\mathrm{CA}: \mathrm{CB}:: \mathrm{B}: \mathrm{A}::$ preffure at B : preffure at A.

PR O P. XXXII.

15. If there be three or more bodies, and if a line be drawn from one body E to the center of gravity of the reft. C. Then the center of gravity of all the bodies divides the line CD , in two parts in D , which are reciprocally as the body E to the fum of all the other bodies. $\mathrm{CD}: \mathrm{DE}:: \mathrm{E}: \mathrm{A}+\mathrm{B} \mathcal{E}^{\circ}$.

For fuppofe $A B$ and $C E$ to be two inflexible lines; and let the body $\mathrm{W}=\mathrm{A}+\mathrm{B} \& \mathrm{c}$. and let W be placed in the center of gravity C. Then by the lat Prop. $\mathrm{CD}: \mathrm{DE}:: \mathrm{E}: \mathrm{W}$ or $\mathrm{A}+\mathrm{B} \& \mathrm{c}$.

Cor. The body $\mathrm{E} \times \mathrm{DE}$ the diftance from the common center of gravity, is equal to the fum of the bodies $\mathrm{A}+\mathrm{B}$ Etc. \times by DC the diftance of their center from the common center of gravity.

PROP.

PROP. XXXIII.

If A, B, be two bodies, C their center of grazity. I σ F any point in the line AB . Tben will $\mathrm{FA} \times \mathrm{A}+$ $\mathrm{FB} \times \mathrm{B}=\mathrm{FC} \times \overline{\mathrm{A}+\mathrm{B}}$.

For (Cor. r. Prop. XXXI.) $\mathrm{CA} \times \mathrm{A}=\mathrm{CB} \times \mathrm{B}_{3}$ that is, $\overline{\mathrm{FA}-\mathrm{FC}} \times \mathrm{A}=\overline{\mathrm{FC}-\mathrm{FB}} \times \mathrm{B}$; whence, by tranfpofition $\mathrm{FA} \times \mathrm{A}+\mathrm{FB} \times \mathrm{B}=\mathrm{FC} \times \overline{\mathrm{A}+\mathrm{B}}$.

Cor. Hence the bodies A and B bave the fame force to turn the lever AF about the point F , as if they were botb placed in C their center of gravity.

PROP. XXXIV.

If feveral bodies $\mathrm{A}, \mathrm{B}, \mathrm{E} \mathcal{E}^{3}$. be placed on an 17 inflexible ftreigbt lever; and if D be their common center of gravity; and if F be any point in the line AE , then $\mathrm{FA} \times \mathrm{A}+\mathrm{FB} \times \mathrm{B}+\mathrm{FE} \times \mathrm{E} \xi^{\circ} \mathrm{c} .=$ $F D \times \overline{A+B+E छ c}$.

For if $A+B=W$, then $F A \times A+F B \times$ $B+F E \times E=F C \times \overline{A+B}+F E \times E=F C$ $\times \mathrm{W}+\mathrm{FE} \times \mathrm{E}=$ (Prop. XXXIII.) $\mathrm{FD} \times$ $\overline{\mathrm{W}+\mathrm{E}}=\mathrm{FD} \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{E}}$, in the three bodies $\mathrm{A}, \mathrm{B}, \mathrm{E}$. And after the fame manner, if there be four bodies, put $W=A+B+E$, and it will be proved the fame way, that the fum of all the products, $\mathrm{FA} \times \mathrm{A}+\mathrm{FB} \times \mathrm{B} \& \mathrm{c} .=\mathrm{dif}-$ tance of the common center of gravity \times by all the four. And fo on for more bodies.

Cor. The fame Prop. will bold good, when the bodies. are not in the line AF , but any where in the perpendiculars pafing tbro' the points $\mathrm{A}, \mathrm{B}, \mathrm{E}$ E ${ }^{3}$ c. PROP.

PR OP. XXXV.

7. If there be any number of bodies $\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathcal{E}^{2}$. either placed in the line AF, or any way in the perpendiculars paling tiro A, B, E. And if D be the center of gravity of all the bodies; and F be any point in the line AF. Then the diftance of the center of gravity $\mathrm{FD}=\frac{\mathrm{FA} \times \mathrm{A}+\mathrm{FB} \times \mathrm{B}+\mathrm{FE} \times \mathrm{E}}{\mathrm{A}+\mathrm{B}+\mathrm{E}}$.

For whether the bodies be in the points A, B, E , or in the perpendiculars, it will be (by Prop. XXXIV. and Cor.) that $\mathrm{FA} \times \mathrm{A}+\mathrm{FB} \times \mathrm{B}+$ $\mathrm{FE} \times \mathrm{E}=\mathrm{FD} \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{E}}$. Whence $\mathrm{FD}=$ $\frac{A \times F A+B \times F B+E \times F E}{A+B+E}=$ fum of all the products of each body multiplied by its diftance, divided by the fum of the bodies.

Cor. I. If a single boll only was placed on the lever AF; then the difance of the center of gravity of that body, is equal to the fum of the products of all the particles of the body, each multiplied by its disstance from a given point F , and diviwed by the body.
For if A, B, E \& c. are feveral particles of the body, then $\mathrm{A}+\mathrm{B}+\mathrm{E} \& \mathrm{c}$. = the body; and $\mathrm{FD}=\frac{\mathrm{A} \times \mathrm{FA}+\mathrm{B} \times \mathrm{FB}+\mathrm{E} \times \mathrm{FE}}{\text { body }}$.

Cor. 2. If there be Several bodies $\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathcal{E}^{\circ} \mathrm{c}$. placed upon the lever AF. They act with the fame force in turning the lever about any given point F , as if they were all placed in D the common center of oravity of all the bodies.

Scholium.
If any of the bodies be placed on the contrary file of F , their refpeciive products will be negative.

For they act the contrary way in turning the le- Fig ver about.

PROP. XXXVI.
If feveral bodies $\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{G}, \mathrm{H}$, be plated on I : the lever AH , and F be the center of gravity of all the weights. Then $\mathrm{FA} \times \mathrm{A}+\mathrm{FB} \times \mathrm{B}+\mathrm{FE} \times \mathrm{E}$ $=\mathrm{FG} \times \mathrm{G}+\mathrm{FH} \times \mathrm{H}$.

For let the lever be fufpended on the point F, then the two ends will be in equilibrio, as F is the center of gravity. Let D be the center of gravity of A, B, E; and I the center of gravity of G, H. Then (Cor. Prop. XXXIII.) it is the fame thing whether the bodies on one fide be placed at A, B, E, or all of them in the point D. And whether thofe at the other end be placed at G, H; or all of them at I. But fince F is the center of gravity, $\mathrm{DF} \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{E}}=\mathrm{FI} \times \overline{\mathrm{G}+\mathrm{H}}$, and therefore $\mathrm{A} \times \mathrm{AF}+\mathrm{B} \times \mathrm{BF}+\mathrm{E} \times \mathrm{EF}=\mathrm{G} \times$ $\mathrm{GF}+\mathrm{H} \times \mathrm{HF}$ (by Prop. XXXIV.)

Cor. I. If feceral lodies $\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{G}, \mathrm{H}$, be placed on an inflexible lever, and if $\mathrm{A} \times \mathrm{FA}+\mathrm{B} \times$ $\mathrm{FB}+\mathrm{E} \times \mathrm{FE}=\mathrm{G} \times \mathrm{FG}+\mathrm{H} \times \mathrm{FH}$. Then F is the center of gravity of all the bodies.

For no other point will anfwer the equation.
Cor. 2. If feiveral bodies $\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{G}, \mathrm{H}$, be placed upon a lever A H , or fufpended at thefe points by ropes; and if $\mathrm{A} \times \mathrm{FA}+\mathrm{B} \times \mathrm{FB}+\mathrm{E} \times \mathrm{FE}=$ $\mathrm{G} \times \mathrm{FG}+\mathrm{H} \times \mathrm{FH}$; they will be in equilibrio upon the point F .

This appears by Def. 12, and E is the center of gravity.

PROP. XXXVII.

19. If a beavy body AB , fufpended by two ropes AC , BD , remains at reft; a right line perpendicular to the borizon, paffing thro' the interfection F of the ropes; will alfo pafs tbro' the center of gravity G , of the bady.

If AC and BD be produced to F where they interfect; then (ax. 12.) it is the fame thing whether the force acting in direction $A C$ be applied to C or F ; and whether the force acting in direction BD be applied to the point D or F. Suppofe then that they both act at F, and then it is the fame thing, as if the body was fufpended at F by the two ftrings $-\mathrm{AF}, \mathrm{BF}$. And fince the body is at reft, therefore (Ax. 7.) the body, that is, the center of gravity G, is at the loweft place it can get; and therefore is in the plumb line FG. For if the body be made to vibrate, the center of gravity G will defcribe an arch of a circle, of which G (being in the perp. FG) is the loweft point.

Cor. 1. Hence if GN be drawon parallel to AC; then the weight of the body, the forces afing at C and D , are refpectively as FG, GN, and FN .

This is evident by Prop. VIII.
Cor. 2. If a beavy body AB , be fupported by two planes, IKL, and EHG, at H and K ; and HF and KF be drawn perpendicular to thefe planes; and if FG Be drawn from the interfection F , perp. to the horizon, it will pafs thro' the center of gravity G, of the body.

For fince the body is fuftained by thefe planes, therefore the planes re-act againtt the body (by Prop. IX.), in the directions HF, KF pependicular to thefe planes. Therefore it is the fame thing

as if the body was fuftained by the two ropes HF, Fig. KF. For the directions and quantities of the $\mathbf{1 9}$. forces, acting at H and K are the fame in both cafes. And further, if the body be made to vibrate round F , the points H, K will defcribe two arches of circles, coinciding with the touching planes at H, K; therefore moving the body up and down the planes, will be juft the fame thing, as making it vibrate in the ropes, HF and KF ; and confequently, the body can reft in neither cafe, but when the center of gravity G is in the perpendicular FG.

Scholium.

If any body fhould deny the truth of this Prop. or its corollaries, againft the cleareft force of demonftration. It lies upon them to fhew where the demonftration fails, or what ftep or fteps thereof do not hold good, or are not truly deduced from the foregoing. If they cannot do this, what other reafons they may affign, can fignify nothing at all to the purpofe. And if fuch perfon, ignorant of the laws of nature, and the refolution of forces, would object agairft this practice, of fubftituting planes perpendicular to the lines or cords fuftaining any weights, inftead of thefe cords. Let him firft read Sir F. Nerwton's Principia, Cor. 2. to the laws of nature, where he will fee this practice exemplified, and then make his objections.

And for the fake of fuch perfons as underftand not how to apply the method of compofition and refolution of forces, I fhall add a few problems to prevent their being mifled by the rafh judgment of fome people, who having brought out falfe folutions to fome problems by their own ill management, condemn the method as erroneous; when the fault really lies in their own ignorance, and not at all in the method itfelf.
20. To determine the pofition of a beam CD , movable about the end C , and fuftained by a given weight Q , banging at a rope QAD , wibich goes over a pulley at A and is fixed to the otber end D .

Draw AF, CK parallel to the horizon, FDE perp. to it, and KD perp. to CD; and let G be the center of gravity, $w=$ weight of the beam. Then if the beam was to lie horizontally (Prop. XXXI. Cor. 2.) it would be GC: GD : : preffure at $\mathrm{D}:$ preffure at C ; and $\mathrm{GC}: \mathrm{CD}::$ preffure at $\mathrm{D}: w$; whence the preffure at $\mathrm{D}=\frac{\mathrm{GC}}{\mathrm{CD}} w$, horizontally. And (Prop. XIV.) CD : CE : : $\frac{\mathrm{GC}}{\mathrm{CD}} w ; \frac{\mathrm{CE} \times \mathrm{CG}}{\mathrm{CD})^{2}} w=$ preffure in direction DK . Produce AD to O, and draw OI parallel to CD. Then the beam is fuftained by three forces in directions OD, DI and IO; and DI : DO : : S.IOD or ODC or ADC : rad; whence S.ADC : rad : : CE \times CG
$\frac{\mathrm{ED}}{} \mathrm{CD}^{2} \times w:$ force DO or $\mathrm{Q}=\frac{\mathrm{rad} \times \mathrm{CE} \times \mathrm{CG}}{\mathrm{S} . \mathrm{ADC} \times \mathrm{CD}^{2} w}$.
Therefore $w: Q:: S . A D C: \operatorname{rad} \times \frac{C E \times C G}{C D^{2}}: ~:$
S.ADC : $\frac{\mathrm{CG}}{\mathrm{CD}} \times \mathrm{S} . \mathrm{FDC}$, becaufe $\frac{\mathrm{rad} \times \mathrm{CE}}{\mathrm{CD}}=$ S.EDC or FDC.
P R O P. XXXIX. Prob.
21. Let the beam ED , be fuftained by the weights P, Q, by means of the ropes DCP, EAQ , going over the pulleys C, A, in the borizontal line AC. To find the pofition of the beam; baving the weights P, Q, given.

> I Way.

Let G be the center of gravity of the beam. Thro' D, E, draw HDS, FER perpendicular to

Sect. III. CENTER OF GRAVITY.
AC: Then (Cor. 2. Prop. VIII.) S.EDS : P the Fig tenfion of the thread CD : : S.CDS or CDH : 2 I . S.CDH
$\overline{S . E D S} \times P$ the tenfion of DE. Alfo, S.DER or
EDS : $\mathrm{Q}::$ S.AER or AEF $: \frac{\mathrm{S.AEF}}{\text { S.EDS }} \times \mathrm{Q}$ the tenfion of DE in a contrary direction. Then as the beam is in equilibrio, thefe forces or tenfions balance one another; therefore $\frac{\text { S.CDH }}{\text { S.EDS }} \times P=$ $\frac{\text { S.AEF }}{\text { S.EDS }} \times \mathrm{Q}$. Then P : Q : : S.AEF : S.CDH; which may be otherwife expreffed, for $A E:$ rad: : $\mathrm{AF}: \mathrm{S} . \mathrm{AEF}=\frac{\mathrm{AF}}{\mathrm{AE}} \times \mathrm{rad}$; and DC: $\mathrm{rad}:: \mathrm{HC}:$ $\frac{\mathrm{HC}}{\mathrm{DC}} \times \mathrm{rad}=$ S.HDC. Whence $\mathrm{P}: \mathrm{Q}:: \frac{\mathrm{AF}}{\mathrm{AE}}:$ $\frac{\mathrm{CH}}{\mathrm{CD}}:: \frac{\mathrm{AF}}{\mathrm{HC}}: \frac{\mathrm{AE}}{\mathrm{DC}} .$,

$$
2 \mathrm{Way} .
$$

Let R, S be the perpendicular preffures of the ends E, $D . w=$ weight of the beam. Then (Cor.2. Prop. XXXI.) $R=\frac{D G}{E D} w$, and $S=\frac{E G}{E^{w}}$. And (Cor. 2. Prop. VIII.) S.AED : R or $\frac{\mathrm{DG}}{\mathrm{ED}} w:$: S.AEF : tenfion of $D E=\frac{\text { S.AEF } \times D G}{\text { S.AED } \times E D} w$. And S.CDE : S or $\frac{\mathrm{EG}}{\mathrm{ED}} w:: \mathrm{S.CDH}:$ contrary tenfion of $D E=\frac{S . C D H}{S . C D E E G} \times E D$, and thefe two forces of DE being equal, we have $\frac{\mathrm{S} \cdot \mathrm{AEF} \times \mathrm{DG}}{\mathrm{S} \cdot \mathrm{AED} \times \mathrm{ED}} w=$ E S.CDH \times S.CDE : S.CDH \times S.AED.

$$
3 \text { Way. }
$$

S.CDE : S.EDS : : $\mathrm{S}: \mathrm{P}=\frac{\text { S.EDS }}{\text { S.CDE }} \times S$, and S.AED : S.RED : : R : $\frac{\text { S.RED }}{\text { S.AED }} \mathrm{R}=\mathrm{Q}$. Then P : $Q:: \frac{\text { S.EDS }}{\text { S.CDE }} \times S: \frac{\text { S.RED }}{\text { S.AED }} \times R:: S . A E D \times S:$ S.CDE \times R : : (laft method) S.AED $\times \frac{\mathrm{EG}}{\mathrm{ED}} w:$ $S . C D E \times \frac{D G}{E D} w:: S . A E D \times E G: S . C D E \times D G$. And S.AED : S.CDE : : P \times DG: $\mathrm{Q} \times$ EG. 4 Way.
Draw $\mathrm{C} m, \mathrm{~F} n$ parallel to DE , and FE, HD perp. to the horizon. Then by the refolution of forces, $\mathrm{CD}: \mathrm{D} m:: \mathrm{P}: \frac{\mathrm{D} m}{\mathrm{CD}} \mathrm{P}=$ perpendicular force at D ; and $n \mathrm{E}: \mathrm{EF}:: \mathrm{Q}: \frac{\mathrm{EF}}{n \mathrm{E}} \mathrm{Q}=$ perpendicular force at E. Therefore EG:GD : $: \frac{\mathrm{D} m}{\mathrm{CD}} \mathrm{P}$: $\frac{\mathrm{EF}}{n \mathrm{E}} \mathrm{Q}:: \frac{\mathrm{S.CDE}}{\mathrm{S.C} m \mathrm{D}} \times \mathrm{P}: \frac{\mathrm{S} . \mathrm{F} n \mathrm{E}}{\mathrm{S} . n \mathrm{FE}} \times \mathrm{Q}:: \operatorname{S.CDE} \times$ $\mathrm{P}: \mathrm{S} . \mathrm{AED} \times \mathrm{Q}$. For S.C $m \mathrm{D}=\mathrm{S} . m \mathrm{DE}=$ S.FED $=\mathrm{S} . n \mathrm{FE}$. That is, EG : GD : : S.CDE $\times \mathrm{P}:$ S.AED $\times \mathrm{Q}$. As in the third way.

$$
5 \text { Way. }
$$

Let R, S be the perpendicular weights of the ends E, D; or which is the fame, the tenfions of the perpen-
$m \mathrm{C}:: \mathrm{S}: \frac{m \mathrm{C}}{m \mathrm{D}} \mathrm{S}=$ force at D in direction $m \mathrm{C}$. But the beam being in equilibrio, thefe two oppofite forces muft be equal; therefore $\frac{\mathrm{F} n}{\mathrm{FE}} \mathrm{R}=\frac{m \mathrm{C}}{m \mathrm{D}} S$. Whence R:S $:: \frac{m \mathrm{C}}{m \mathrm{D}}: \frac{\mathrm{F} n}{\mathrm{FE}}:: \frac{\mathrm{S.CDH}}{\mathrm{S.CDE}}: \frac{\mathrm{S.AEF}}{\mathrm{S.AED}}:$: S.AED \times S.CDH : S.AEF \times S.CDE. But (Cor. 2. Prop. XXXI.) R : S : : DG : EG. Whence DG : EG : : S.AED \times S.CDH : S.AEF \times S.CDE; the fame as by the 2 d method. And the fame thing likewife follows from the ift and 4th method together.

From thefe feveral ways of proceeding, it is evident, that which ever way we take, the procefs if rightly managed always brings us to the fame conclufion; and it comes to the fame thing which way we ufe, fo that we proceed in a proper manner. And this among other things, fhews the great ufe and extent of that noble theory of the compofition and refolution of forces.

What is calculated above is concerning the angles, or the pofition of the feverallines to one another, depending on the feveral forces. Then in regard to the weight of the beam, put it $=w$, then DC: $\mathrm{D} m:: \mathrm{P}: \frac{\mathrm{D} m}{\mathrm{DC}} \mathrm{P}=\mathrm{S}$, and $\mathrm{E} n: \mathrm{EF}:: \mathrm{Q}: \frac{\mathrm{EF}}{\mathrm{E} n} \mathrm{Q}$
$=\mathrm{R}$. And $w=\mathrm{R}+\mathrm{S}=\frac{\mathrm{D} m}{\mathrm{DC}} \mathrm{P}+\frac{\mathrm{EF}}{\mathrm{E} n} \mathrm{Q}$, an equation fhewing the relation of the weights to one another.

$$
\mathrm{E}_{2}
$$

CENTER OF GRAVITY.

Fig.
2 I.
6 Way, by the center of gravity.
Produce AE, CD to B, and from B draw BGO thro' the center of gravity ; which (by XXXVII.) will be perp. to AC, and therefore parallel to EF, DH. Then the angle EBG $=\mathrm{AEF}$, and DBG $=\mathrm{CDH}$. Then EB: BD : : S.BDE or CDE : S.BED or AED, and (Trigonom. B. Il. Prop. V. Cor. ı.) EG: GD : : EB \times S.EBG $: B D \times S . D B G::$ $\mathrm{EB} \times \mathrm{S} . \mathrm{AEF}: \mathrm{BD} \times \mathrm{S} . \mathrm{CDH}:: \mathrm{S.CDE} \times \mathrm{S} . \mathrm{AEF}:$ S.AED \times S.CDH; the fame as by the 2 d way. Whence all the reft will be had as before.

Cor. It will be exaitly the fame thing, whetber the weights P, Q, remain, or the Arings AE, CD, be fixed in that pofition to two tacks, any way in theje lines. And if a beam ED, bang upon two tacks A, C, by ropes fixed there; it makes no difference, if you put two pulleys inftead of the tacks, for the ropes to go over, and then hang on the weights Q, P, equal to the tenfions of the frings AE, CD.
For in both cafes, the forces or the tenfions of the ftrings, and their directions, remain the fame. And there is nothing elfe to make a difference in the fituation of the beam.

Scholium.

Every one that knows any thing of mechanical principles will eafily underftand, that if any forces, which keep a body at reft, be refolved into others, to have the fame effect; the contrary forces, or thofe directly oppofite, muft act againft a fingle point; or elfe the equilibrium will be deftroyed. And therefore in the prefent Prop. fuppofe any one fhould divide the forces CD, AE, into the two HD , DY, and FE, EX, one perpendicular, the other parallel to the horizon. The forces HD, EF, will indeed balance the force of gravity at D and E, to which

Sect. III. CENTER OF GRAVITY.
which they are directly oppofite. And therefore Fig. the beam will remain unmoved by thefe. But the 21 . equal forces DY, EX, being parallel, never meet in a point ; but acting obliquely on the beam, one of them drawing at D in direction DY, and the other at E in direction EX, the effect will be, that they will turn the beam ED about the center of gravity G. Therefore to prevent this, the forces DY, EX, muft be fubdivided; that is, they muft be refolved into others, one whereof is perp. to the horizon, the other parallel to ED. Then gravity will balance thefe perp. to the horizon, and the others, being equal and oppofite, acting in the line EGD, act equally againft any of the points D, G, or E. And to the beam will remain at reft. Buf this is much better done at once at the firt, by dividing DC, EF, each into two forces, one perp. to the horizon, the other parallel to the beam EFs And then the oppofite forces will exactly balance one another, and the beam remain unmoved.

P R O P. XL. Prob.

To find the pofition of the beam ED, hanging by 22. the rope EBD, whofe ends are faftened at E and D , and goes over a pulley fixed at B.

Let G be the center of gravity of the beam, then (Prop. XXXVII.) BG will be perp, to the horizon. Then as the cord runs freely about the pulley B; therefore ($\mathrm{Ax} . \mathrm{I}_{3}$.) the tenfion of the parts of the rope $E B, B D$ are equal to one another, fuppofe $=\mathrm{T}$. By the refolution of forces, the force EB is equivalent to EG, GB; and DB to DG, GB. Therefore BE :EG : : $T: \frac{E G}{E B} T=$ force in direction EG. And BD : DG : : T $: \frac{\mathrm{DG}}{\mathrm{BD}} \mathrm{T}=$ force in E 3 direction

Fig. direction DG, which is equal and oppofite to that 22. in EG; therefore $\frac{E G}{E B} T=\frac{D G}{D B} T$. Whence $E G$: EB : : DG : DB. And therefore BG bifects the angle EBD.

Cor. Hence ED : Aring EBD :: EG : EB the part EB of the fring : : and $50 . \mathrm{GD}: \mathrm{DB}$ the part DB of the Aring.

Scholium.
If GD be lefs than GE, then the center of gravity G, will be loweft, when the beam hangs perpendicular with the end D downward. And in many cafes it will be higheft, when it hangs perpendicular, with the end E downward.

> P R O P. XLI. Prob.

There is a beam BC banging by a pin at C , and lying upon the wall BE ; to find the forces or prefures at the poinis B , and C , and their directions.

Produce BC to K , fo that CK may be equal to CB. Draw BA parallel, and CL perpendicular, to the horizon; and draw BL, CN, KI perp. to BCK. Thro the center of gravity G , draw GF parallel to CL. By Prop. XIV. if a body lies upon an inclined plane, as BC ; its weight, its inclination down the plane, and preffure againft it, are as $B C, C A$ and $A B$; that is, as $C L, C B$ and BL. Therefore if CL reprefent the weight of the body, CB will be the force urging it down the plane, and EL the total preffure againft the plane. And fince GF is parallel to CL, BL is divided in F , in the fame ratio, as BC is divided in G. And therefore (Cor. 2. Prop. XXXI.) BF will be the part of the preffure acting at C , and FL the part acting at B. Make $C N$ equal to $B F$, and compleat the

Sect. III. CENTER OF GRAVITY.

 the parallelogram CNIK, and draw CI. Then Fig. fince BC or CK is the force in direction CK , and $23^{\text {: }}$ CN the force in direction CN ; then by compofition, CI will be the fingle force by which C is fuftained, and CI its direction. But the triangles CKI, CBF are fimilar and equal, and $\mathrm{CI}=\mathrm{CF}$, and in the fame right line; therefore CF is the quantity and direction of the force acting at C to fuftain it. Therefore the weight of the body, the preffure at B , and the force at C ; are refpectively as CL, FL, and CF.Cor. I. Produce FG to interfect CN in H ; then the weight of the body, the preflure at B , and the force acting at C ; are refpectively as HF, HC, and CF.

For in the parallelogram CLFH, $\mathrm{HF}=\mathrm{CL}$, and $\mathrm{HC}=\mathrm{FL}$.

Cor. 2. If the beam was fupported by a pin at B , and laid upon the wall AC; the like confruction muft be made at B , as has been done at C , and then the forces and directions will be bad.

Cor. 3. If a line perp. to the borizon be drawn. tbro' F , where the direction of the forces CF , and BF meet; it paljes tbra' G the center of gravity of the beam.

Cor. 4. It is all one whetber the beam is fuftained by the pin C and the wall BE , or by two ropes CI , BP acting in the directions $\mathrm{FC}, \mathrm{FB}_{2}$ and with the forces CF, FL.

Scholium.

The proportions and directions of the forces here found, are the fame as in Prop. LXIV. of my large book of Mechanics, and obtained here by a different method. The principles here ufed are indifputable; and the principle made ufe of in that

CENTER OF GRAVITY.

Fig. LXIV. Prop. is here demonftrated in the third Cor. 23. fo that the reader may depend upon the truth of them all.
P R O P. XLII. Prob.
24. BC is a beavy beam fupported upon two pofts KB , LC; to find the pafition of the pofts, that the beam may' reft in equiliorio.

Let G be the center of gravity; draw BA parallel to the horizon, and BF, GD, CAN perpendicular to it. Then (Prop. XXXI. Cor. 2.) if BC be the weight of the body, CG will be the part of the weight acting at B , and BG the weight at C . Therefore make $\mathrm{CN}=\mathrm{BG}$, and $\mathrm{BF}=\mathrm{GC}$; and from N and F , draw NI, FK, parallel to BC ; and make NI = FK, of any length, and lying contrary ways. Then draw IC and KB, which will be the $p<$ fition of the pofts required.

For $B F$ is the weight upon B; and $C N$, that upon C , which forces being in direction of the lines BF, CN, the beam will remain at reft by thefe forces., And the forces NI, FK, in direction BC , being equal and contrary, will alfo keep the beam in equilibrio, therefore the forces KB, IC, compounded of the others, will alfo keep the beam in equilibrio, acting in the directions KB, IC, or MB, LC.

Cor. I. Hence if DG be produced, it will pa/s tbro' the interfestion H , of the lines LC, MB.

For the triangles INC, CGH are fimilar; therefore $\mathrm{IN}: \mathrm{NC}:: \mathrm{CG}: \mathrm{GH}$, the interfection with CL. Alfo the triangles $\mathrm{KFB}, \mathrm{BGH}$ are fimilar ; therefore $\mathrm{KF}: \mathrm{BG}:: \mathrm{BF}: \mathrm{GH}$ the interfection with MB , which mult needs be the fame as the ather, fince the three firft terms of the proportion are the fame; for $\mathrm{KF}=\mathrm{NI}, \mathrm{BG}=\mathrm{NC}$, and $B F=C G$.

Cor. 2. If a line be drawn tbro' the center of gra- Fig. vity G , of the beam, perpendicular to the borizon; 24 . and from any point H in that line, (above or below G), the lines HBK and HCM be drawn; then the props BM and CL will fuftain the beam in equilibrio.

Cor. 3. If GO be drawn parallel to HC ; then the weight of the beam, the preffure at C , and thruft or preflure at B ; are refpectively as HG, OG, and HO , and in the ele directions.

Cor. 4. It is all one for maintaining the equilibrium, whether the beam BC be fupported by two pofts or props MB, LC; or by two ropes BH, CH; or by two planes perpendicular to the fe ropes at B and C .

For in all thefe cafes the forces and directions are the fame; and there is nothing elfe concerned, but the forces and directions.

Scholium.

It does not always happen that the center of gravity is at the loweft place it can get, to make an equilibrium. For here if the beam $B C$ be fupported by the pofts MB, LC; the center of gravity is at the higheft it can get; and being in that poiftion, it has no inclination to move one way more than another, and therefore it is as truly in equilibrio, as if it was at the loweft point. It is true, any the leat force will deftroy that equilibrium, and then if the beam and pofts be movable about the angles $\mathrm{M}, \mathrm{B}, \mathrm{C}, \mathrm{L}$, which is all along fuppofed, the beam will deleend till it is below the points M, I , and gain fuch a pofition as defcribed in Prop. XXXIX. and ins Cor. fuppofing the ropes fixed at $\mathrm{A}, \mathrm{C}(\mathrm{fig} .2 \mathrm{I}$) ; and then G will be at the loweft point, and will come to an equilibrium again. In planes, the center of gravity G may be either at its higheit or lowert point. And there are cafes, when the

58 CENTER OF GRAVITY.

Fig. the center of gravity is neither at its higheft nor 24. loweft, as may happen in the cafe of Prop. XL. fo that they who contend, that in cafe of an equilibrium, the center of gravity muft always be at the loweft place, are much miftaken, and know little about the principles of mechanics, or the nature of things.

Thofe that want to fee more variety about the motion of bodies, on inclined planes; the preffure, and direction of the preffure of beams of timber; centers of gravity, and alfo the centers of ofcillation and percuffion, \&c. may confult my large book of Mechanics.

S E C T. IV.

The Mechanical Powers; the Strengto and Stress of Timber.

P R O P. XLIII.

$I N$ a balance, where the arms are of equal length; if two equal weigbts be fufpended at the ends, they will be in equilibrio.

The balance is a ftreight inflexible rod or beam, turning about a fixed point or axle in the middle of it; to be loaded at each end with weights fufpended there.

Let $A B$ be the beam or lever, C the middle 25 point or center of motion; D, E the weights hanging at the ends A and B. Then let the beam and the weights, or the whole machine, be fufpended at C. And fuppofe the beam and the weights be turned about upon the center C; then the points A, B being equidiftant from C will defcribe equal arches, and therefore the velocities will be equal, and if the bodies D and E be equal, then the motion of D will be equal to the motion of E , as their quantities of matter and velocities are equal; and confequently, if the beam and weights are fet at reft, neither of them can move the other, but they will remain in equilibrio.

Cor. If one weight be greater than the otber; tbat weight and fcale will defcend, and raife the otber.

Scholium.

The ufe of the balance, or a common pair of fcales, is to compare the weights of different bodies;

Fig. dies; for any body whofe weight is required, be25 . ing put into one fcale, and balanced by known weights put into the other fcale, thefe weights will Shew the weight of the body. To have a pair of fcales perfect, they muft have thefe properties. 1. The points of fufpenfion of the fcales, and the center of motion of the beam, $\mathrm{A}, \mathrm{C}, \mathrm{B}$, muft be in a right line. 2. The arms AC, BC, muft be of equal length from the center. 3. That the center of gravity be in the center of motion C. 4. That there be as little friction as poffible. 5. That they be in equilibrio, when empty.

If the center of gravity of the beam be above the center of motion, and the fcales be in equilibrio, if they be put a little out of that pofition, by putting down one end of the beam, that end will continually defcend, till the motion of the beam is ftopt by the handle H. For by that motion, the center of gravity is continually defcending, according to the nature of it. But if the center of gravity of the beam be below the center of motion; if one end of the beam be put down a little, to deftroy the equilibrium ; it will return back and vibrate up and down. For by this motion the center of gravity is endeavouring to defcend.

> P R O P. XLIV. Prob.
25. To make a falfe balance; or one wbich is in equilibrio wiben empty, and alfo in equiliurio, when loaded with unequal weights.

Make fuch a balance as defcribed in the laft Prop. only inftead of making the center of motion in the middle at C , make it nearer one end, as at F . And make the weight of the fcales fuch, that they may be in equilibrio upon the center F. Then if two weights D , E , be made to be in equilibrio in the two fcales; thefe weights will be unequal,

Sect. IV. MECHANIC POWERS.

for they will be reciprocally as the lergths of the Fig arms AF, BF. That is, $\mathrm{AF}: \mathrm{BF}:: \mathrm{E}: \mathrm{D}$.

For (Prop. XXXI. Cor. r.) fince F is the center of gravity of D and E , fuppofing them to act at A and B; therefore $F A \times D=F B \times E$. And $F A: F B:: E: D$. But $A F$ is greater than $F B$, therefore E is greater than D .

Cor. 1. Hence to difcover a falfe balance, make the weights in the two fcales to be in equilibrio; then cbange the weights to the contrary fcales. And if they be not in equilibrio, the balance is falfe.

Cor. 2. Hence alfo to prove a pair of good fcales, they muft be in equilibrio when empty, and likerwife in equilibrio with two wcights. Then if the weights be cbanged to the contrary fales, the equilibrium will Aill remain, if the fcales are good.

Cor. 3. From bence alfo may be known what is gained or loft, by cbansing the weights, in a falfe balance.

Take any weight as I pound, to be put into one fcale and balanced by any fort of goods in the other. Since $\mathrm{AF} \times \mathrm{D}=\mathrm{BF} \times \mathrm{E}$; let the weight D be 1 , then $E=\frac{A F}{B F}$ the weight of the goods in the fcale E . Then changing the fcales, let the weight E be 1 ; then $D=\frac{B F}{A F}$ the weight of the goods in the fcale D. Then $\frac{\mathrm{AF}}{\mathrm{BF}}+\frac{\mathrm{BF}}{\mathrm{AF}}=$ whole weight of the goods, and $\frac{A F}{B F}+\frac{\mathrm{BF}}{\overline{\mathrm{AF}}-2=\text { gain }}$ to the buyer in 2 lb . \&c. Therefore $\frac{\mathrm{AF}^{2}+\mathrm{BF}^{2}-2 \mathrm{AF} \times \mathrm{BF}}{\mathrm{AF} \times \mathrm{BF}}=$ gain in $2 \mathrm{lb} .=$
$\frac{\overline{\mathrm{AF}-\mathrm{BF})^{2}}}{\mathrm{AF} \times \mathrm{BF}}$; and $\frac{\overline{\mathrm{AF}-\mathrm{BF}}{ }^{2}}{2 \mathrm{AF} \times \mathrm{BF}}=$ gain in Ilb .

Hig. Therefore if w is any weight to be bought; the 25. gain to the buyer, for the weight w, by changing the fcales, will be $\frac{\overline{\mathrm{AF}-\mathrm{BF}})^{2}}{2 \mathrm{AF} \times \mathrm{BF}}$ w. For example, if AF be 16 , and BF_{15}; then the gain will be $\frac{{ }^{\frac{16-15}{2}}}{2 \times 16 \times 15} w=\frac{1}{480} w$.

Scholium.

In demonftrating the properties of the mechanical powers; fince the weight is commonly fome large body whofe weight is to be overcome or balanced; therefore the power which acts againft it, will be moft fitly reprefented by another weight; and thus the power and weight being of the fame kind, may moft properly and naturally be compared together. For fuch a weight rnay reprefent any power, as the ftrength of a man's hand, the force of water or wind, \&c. And this weight reprefenting the power, being fufpended by a rope, may hang perpendicular where the power is to act perpendicular to the horizon; or may go over a pulley, when it acts obliquely.

PROP. XLV.

6. If the power and weight be in equilibrio upon any lever, and att in lines perpendicular to the lever; then the power P is to the rweight W ; as the dif9. tance of the weight from the fupport C , is to the diftance of the pozer from the fupport.

There are four forts of levers. I. When the fupport is between the weight and the power. 2. When the weight is between the power and the fupport. 3. When the power is between the weight and the fupport. 4. When the lever is not ftreight
but crooked.

A le-

A lever is any inflexible rod or beam, of wood Fig. or metal, made ufe of to move bodies. The fup- 26 . port is the prop it refts on, in moving or fuftaining 27. any heavy body, and this is the fame as the center 28. of motion.

Let the power P act at A by means of a rope; then as C is the prop or center of motion, if the lever be made to move about the center C , the arches defcribed by A and W ; that is, the velocities of A and W will be as the radii $C A$ and CW. But the velocity of P is the fame as that of the point A. Therefore velocity of P : velocity of W : : CA : CW : : (by fuppofition) W : P; therefore $\mathrm{P} \times$ velocity of $\mathrm{P}=\mathrm{W} \times$ velocity of W . Confequently their motions are equal, and they cannot move one another, but muft remain in equilibrio. And if they be in equilibrio, they muft have this proportion affigned.

Cor. I. If a power P act obliquely againft the le- 30. ver WA; the power and weight will be in equilibrio, when the power P is to the weigbt W ; as the diftance of the woight CW , to CD the perpendicular, drawn from the fupport to the line of direction of the power.

For in this cafe WCD becomes a bended lever, and the power P acts perpendicular to CD at D ; and (Ax. 12.) it is all one whether the power acts at D or A , in the line of direction AD. And hence,

Cor. 2. If any force be applied to a lever ACW at A , its poseer to turn it about the center of motion C , is as the fine of the angle of application CAD.

For if CA be given, CD is as the fine of CAD.
Cor. 3. In a ftreight lever, of thefe tbree, the power, the weight, and the preflure upon the fupport; the middlemoft is equal to the fum of the otber two.

For the middle one acts againft both the others and fupports them.

Fig. Cor. 4. From the foregoing properties of the le30. ver, the effeits of feveral forts of Simple macbines may be explained; and likewife the manner of lifting, carrying, drawing of heavy bodies, and fucb like.
26. For example, if a given weight W is to be raifed by a fmall power applied at A, the end of the lever AW. If we divide WA in C, fo that it be as CA : CW : as the weight W : to the power P ; then fixing a prop or fupport at C or rather a little nearer W ; then the power P with a fmall addition, will raife the weight W .
27. Again, if two men be to carry a weight W , upon the lever CA. The weight the man at A carries, is to the weight the man at C carries as CW , to AW. And therefore the lever or beam CA ought to be divided in that proportion at W , the place where the weight is to lie, according to the ftrength of the men that carry it.
31. Likewife if two horfes be to draw at the fwingtree AB , by the ropes AF, BG; and the fwingtree draws a carriage \&c. by the rope CD; then the force acting at A will be to the force acting at B, as $B C$ to $A C$. And therefore $B C$ ought to be to $A C$, as the ftrength of the horfe at F, to the ftrength of the horfe at G; the weaker horfe having the longer end. But it is proper to make the crofs bar $A B$ crooked at C; that when the ftronger horfe pulls his end more forward, he may pull obliquely, and at a lefs diftance from the center; whilft the weaker horfe pulls at right angles to his end, and at a greater diftance.

Again, fuch inftruments as crows and handfpikes are levers of the firt kind, and are very uffeful and handy for raifing a great weight to a fmall hight. Alfo fciffars, pinchers, fnuffers, are double levers of the firft kind, where the joint is the fulcrum or fupport. The oars of a boat, the rudder of a fhip, cutting knives fixed at one end, are levers of the fecond
fecond kind. Tongs, fheers, and the bones of Fig. animals, are levers of the third kind, a ladder raifed upright, is a lever of the third kind. A hammer drawing out a nail is a lever of the fourth kind. 32 .

The Steel Yard is nothing but a lever of the firft kind, whofe mechanifm or conftruction is this. Let $A B$ be the beam, C the point of fufpenfion; \mathbf{P} the power, movable along the beam CB. The beam being fufpended at D, move the power P, along towards C , till you find the point O , where \mathbf{P} reduces the beam to an equilibrium. Then at \mathbf{A} hang on the weight W of 1 pound; and move \mathbf{P} to be in equilibrio with it at I ; then hang on W of 2 pound, and fhift P till it be in equilibrio, at 2. Proceed thus with $3,4,5, \& c$. pounds at W, and find the divifions $3,4,5, \& \mathrm{c}$. Or if you will: after having found the points O, I; make the divifions, 12, 23, 34, \&c. each equal to Or. But for more exactnefs and expedition, having found the point O , where P makes the beam in equilibrio: hang on any known number of pounds, as W ; and move P to the point B, where it makes an equilibrium. Then divide $O B$ into as many equal parts as W confifts of pounds: mark thefe divifions $1,2,3,4, \& \mathrm{c}$. Then any weight W being fufpended at A. If P be placed to make an equilibrium therewith; then the number where P hangs will fhew the pounds or weight of W .

To prove this, we muft obferve, that AC is the heavier end of the beam ; therefore let Q be the Momentum at that end to make an equilibrium with P fufpended at O ; that is, $\operatorname{let} \mathrm{Q}=\mathrm{CO} \times \mathrm{P}$. But (Cor. 2. Prop. XXXVI.) $\mathrm{Q}+\mathrm{CA} \times \mathrm{W}=$ $\mathrm{CF} \times \mathrm{P}=\mathrm{CO} \times \mathrm{P}+\mathrm{OF} \times \mathrm{P}$. Take away Q $=\mathrm{CO} \times \mathrm{P}$, and then $\mathrm{CA} \times \mathrm{W}=\mathrm{OF} \times \mathrm{P}$. Whence AC : P : : OF : W. But AC and P are always the fame ; therefore W is as OF ; that is,

Fig. if OF be $1,2,3, \& c$. divifions, then W is $1,2,3$, 32. \&c. pounds.

We may take notice that the divifions $\mathrm{O}_{1}, \mathbf{I}_{2}$, ${ }^{23}, \& c$. are all equal ; but CO may be greater or leffer, or nothing.

If you would know how much the weight P is, take the diftance CA, and fet it from O along the divifions $O, 1,2,3, \& c$. and it will reach to the number of pounds. But this is of no confequence, being only matter of curiofity.

PROP. XLVI.

33. In the compound lever, or where feveral levers att upon one anotber, as $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, whofe fupports are $\mathrm{F}, \mathrm{G}, \mathrm{I}$; the power P : is to the weight W : : as $\mathrm{BF} \times \mathrm{CG} \times \mathrm{DI}$: to $\mathrm{AF} \times \mathrm{BG} \times \mathrm{CI}$.

For the power P acting at $\mathrm{A}:$ force at $\mathrm{B}:: \mathrm{BF}$: AF ; and force or power at B : force at $\mathrm{C}:: \mathrm{CG}$: GB; and force or power at $\mathrm{C}:$ weight $\mathrm{W}:: \mathrm{DI}$: IC. Therefore ex equo, power P : weight W : : $\mathrm{BF} \times \mathrm{CG} \times \mathrm{DI}: \mathrm{AF} \times \mathrm{GB} \times \mathrm{IC}$.

And it is the fame thing in the other kinds of levers, taking the refpective diftances, from the feveral props or fupports.

P R O P. XLVII.

34. In the wheel and axle; the weight and power will be in equilibrio, when the power \mathbf{P} is to the weight W ; as the radius of the axle CA, where the weight bangs; to the radius of the wheel CB , where the power acts.

This is a wheel fixed to a cylindrical roller, turning round upon a fmall axis; and having a rope going round it.

Thro' the center of the wheel C, draw the hori- Fig. zontal line BCA. Then BP and AW are perpen- 34 . dicular to BA; and BCA will be a lever whofe fupport is C ; and the power acts always at the diftance BC , and the weight at the diftance CA ; which remain always the fame. Therefore the weight and power act always upon the lever BCA. But by the property of the lever (Prop. XLV.) $\mathrm{BC}: \mathrm{CA}:: \mathrm{W}: \mathrm{P}$, to have an equilibrium.

Otberwife,

If the wheel be fet a moving the velocity of the point A or of W, is to that of B or P, as CA to CB ; that is (by fuppofition), as $\mathrm{P}: \mathrm{W}$. Therefore $\mathrm{W} \times$ velocity of $\mathrm{W}=\mathrm{P} \times$ velocity of P ; therefore the motions of P and W , being equal, they cannot, when at reft, move one another.

Cor. I. If the power acting at the radius CB , act not at rigbt angles to it; draw CD perpendicular to BP the direction of the power; then the power P : is to the weight $\mathrm{W}:$: as the radius of the axle CA : to the perpendicular CD.

For in the lever DCA, whofe fupport is C, the power P : weight W : : CA : CD.

Cor. 2. In a roller turned round, on the axis or 36. Spindle FC, by the bandle CBG; the power applied perpendicularly to BC at B , is to the weight W :: as the radius of the roller DA , to the length of the bandle CB.

For in turning round, the point \mathbf{B} defcribes the circumference of a circle; the fame as if it was a wheel whofe radius is CB.

> Scholidum.

All this is upon fuppofition that the rope furs taining the weight is of no fenfible thicknefs. But if it is a thick rope, or if there be feveral folds of

Fig. it about the roller or barrel; you muft meafure 36. to the middle of the out fide rope to get the radius of the roller. For the diftance of the weight from the center is increafed fo much, by the rope's going round.
From hence the effects of feveral forts of machines, or inftruments, may be accounted for. A roller and handle for a well or a mine, is the fame thing as a wheel and axle, a windlefs and a capftain in a fhip is the fame; and fo is a crane to draw up goods with. A gimblet and an auger to bore with, may be referred to the wheel and axle.

The wheel and axle has a particular advantage over the lever; for a weight can but be raifed a very little way by the lever. But by continual turning round of the wheel and roller, the weight may be raifed to any hight required.

PROP. XLVIII.

37. In a combination of wheels with teeth; if the porwer P be to the weight $\mathrm{W}:$: as the product of the diameters of all the axles or pinions, to the product of the diameters of all the wheels; the power and weigbs will be in equilibrio.
$A C, C D$ are the radii of one wheel and its axle; DG, GH, the radii of another; and HI, JK are thofe of another. Thefe act upon one another at D and H , then as the power or force P is propagated thro' all the wheels and axles to W ; we muft proceed to find the feveral forces acting upon them, by Prop. XXXVII. Thus,

$$
C D: C A:: P: \frac{C A}{C D} P=\text { force acting at } D .
$$

and GH: GD : : $\frac{C A}{C D} P$ (force at D) $: \frac{C A \times G D}{C D \times G H} P$
$=$ force acting at H .

Sect.IV. MECHANIC POWERS.
and $\mathrm{IK}: \mathrm{IH}:: \frac{\mathrm{CA} \times \mathrm{GD}}{\mathrm{CD} \times \mathrm{GH}} \mathrm{P}$ (force at H) $:{ }_{37}^{\mathrm{Fig}}$.
CA $\times \mathrm{GD} \times \mathrm{IH}$
$\overline{\mathrm{CD} \times \mathrm{GH} \times \mathrm{IK}} \mathrm{P}=$ force at $\mathrm{K}=\mathrm{W}$. And $\mathrm{CA} \times$
$\mathrm{GD} \times \mathrm{IH} \times \mathrm{P}=\mathrm{CD} \times \mathrm{GH} \times \mathrm{IK} \times \mathrm{W}$; whence P : W : : $\mathrm{CD} \times \mathrm{GH} \times \mathrm{IK}:: \mathrm{CA} \times \mathrm{GD} \times \mathrm{IH}$.

Cor. r . If the weight and power be in equilibrio, and made to move; the velocity of the weight, is to the velocity of the power; as the product of the diameters of all the axles or pinions, to the product of the diameters of all the wheels. Or inftead of the diameters, take the number of teetb in thefe axles and wbeels that drive one another. And the fame is true of wheels carried about by ropes.

For the power is to the weight; as the velocity of the weight to the velocity of the power. And the number of teeth in the wheels and pinions, that drive one another, are as the diameters. And the ropes fupply the place of teeth.

Cor. 2. In a combination of wheels with teeth. The number of revolutions of the firft wheel, is to the number of revolutions of the laft wheel, in any time; as the product of the diameters of the pinions or axles, to the product of the diameters of the wheels: or as the product of the number of teeth in the pinions, to the product of the number of teeth in the sobeels which drive them. And the fame is true of wheels going by cords.

For as often as the number of teeth in any pinion, is contained in the number of teeth of the wheel that drives it ; fo many revolutions does that pinion make for one revolution of the wheel.

Scholium.

A pinion is nothing but a fmall wheel, fixed at the other end of the axis, oppofite to the wheel;

$$
\mathrm{F}_{3} \text { and }
$$

Fig. and confifts but of a few leaves or teeth ; and there37. fore is commonly lefs than the wheel. But in the fenfe of this propofition, a pinion may, if we pleafe, be bigger than the wheel. As if we put the power and weight into the contrary places, the wheels will become the pinions, and the pinions the wheels, according to the meaning of this propofition.

PROP. XLIX.

If a power fuftains a weight by means of a fixed pulley; the power and weight are equal: but if the pulley be movable along with the weight, then the weigbt is double the power.

A pulley is a fmall wheel of wood or metal, turning round upon an axis, fixed in a block; on the edge of the pulley is a groove for the rope to go over.

Thro' the centers of the pullies, draw the horizontal lines $A B, C D$; then will $A B$ reprefent a lever of the firt kind, and its fupport is the center of the pulley, which is a fixed point, the block being fixed at F. And the points A, and B, where the power and weight act, being equally diftant from the fupport, therefore (Prop. XLV.) the power $P=$ weight W.

Alfo CD reprefents a lever of the fecond kind, whofe fupport is at C, a fixed point; the rope CG being fixed at G. And the weight W acting at the middle of CD , and the power acting at D , twice the diftance from C; therefore (Prop. XLV.) the power P is to the weight $\mathrm{W}::$ as $\frac{1}{2} \mathrm{CD}$ to CD ; or as I to 2.

Cor. Hence all fixed pulleys are levers of the firft kind, and Serve only to cbange the direction of the motion; but make no addition at all to the power.

Sect. IV. MECHANIG POWERS:
And therefore if a rope goes over feveral fixed pul. Fig. lies; the power is not increafed, but ratber decreafed, 38. by tbe friction.

The ufe of a fixed pulley is of great fervice in raifing a weight to any height, which otherwife muft be carried by ftrength of men, which is often impracticable. Therefore if a rope is fixed to the weight at W (fig. $3^{8 .}$) and paffed over the pulley BA; a man taking hold at P will draw up the weight, without moving from the place. And if the weight be large, feveral perfons may, pull together at F, to raiie the weight up; where in many cafes they cannot come to it, to raife it by ftrength.

PROP. L.

In a combination of pullies, all drawn by one rope $4 \mathrm{a}_{1}$ going over all the pullies; if the power P is to the weeight W ; as 1 to the number of the parts of the rope proceeding from the morvable block and pullies. Then the power and weight will be in equilibria.

Let the rope go from the power about the pullies in this order, ntovrs, where the laft part s is fixed to the lower block B. Now (Ax. 13.) all the paits of the rope n tovrs are equally ftretched, and therefore each of them bears an equal weight; but the part n bears the power P , which goes to the fixed block A. All the other parts, fultain the weight and movable block B, each with a force equal to P. Therefore P is to the fum of all the forces, fuftained by $0, r, s, t, v$, or the weight W , as I to the number of thefe ropes immediately communicating with the movable block B. And all the ropes having an equal tenfion, none of F 4 them,

Fig. them can move the reft, but they muft remain in 40. equilibrio.

And if you take away the power at P, and apply a force at the rope t equal to P, to pull upwards in direction $t \mathrm{~A}$; this will make no alteration, for the rope t draws from the movable block with the fame force as before, and therefore the weight is fuftained as before; for the upper pulley (by Prop. XLIX. Cor.) which the rope $n t$ goes over, ferves only to change the direction. And therefore as there are the fame number of ropes ftill drawing from the movable block as before; the propofition holds good alfo in this refpect. And it would be the fame thing if the rope s was fixed to the weight W inftead of the block \mathbf{B}; but had it been fixed to the block A, there muft have been a pulley more below, and a rope more, which would have increafed the power, according to the propofition.

Cor. 1. Hence it appears to be a dijadvantage to the power to pull againft the fixed block.

For the rope n has no more purchafe, or no more effect than the rope t has which draws againft the movable block; and therefore when one draws by the rope n, there muft be a pulley more, which will create more friction.

Cor. 2. Hence one may explain the effects of all forts of macbines compocfed of pullies; or find out fucb a conftruttion or combination of them as to anfwer any purpofe defired. And to find its force, begin at the power, and call it I ; then all parts of the running rope that go and return about feveral pullies, muft be each numbered alike. And any rope tbat acts as ainft Sereral otbers muft be numbered with the fum of thefe. And fo on to the weight.

For example; fuppofe a man wanted to draw him- Fig. felf up to the top of a houfe or a church. Get a 41. pulley A fixed at the top, and place another B at the bottom. Let a rope be fixed to the upper block A, and brought down about the pulley B, and then put round the upper pulley, and fo brought to the ground at H. Then if a crofs ftick $C D$ be faftened to the block B by a rope; a man may get aftride of the ftick, and then draw himfelf up by the rope H . And the power to draw himfelf up, will be little more than $\frac{\pi}{3}$ of his weight. For the power at H , and the two parts of the rope going about the pulley B, futtain all his weight; and each of them fuftains one third of it.

If inftead of the ftick $C D$, he takes a chair to fit in ; then when he has drawn himfelf up to any hight he pleafes, he may fix the rope H to the chair, and then do any fort of bufinefs, as fet up a dial, point the walls, and fuch like, as is commonly done.

Again, feveral tackles are ufed aboard a hip, 4e: for hoifting goods and the like. Let A, B be twa blocks with pullies, the upper one being fixed, and let a weight W be fufpended at the fingle pulley and rope, one end of the rope being fixed at \mathbf{F}, and the other faftened to the movable block \mathbf{B}. This pulley and rope BCF is called a Runner. Let the power be at P, call it 1 ; then all the ropes going from B to A, mult be each of them I, and the rope going from the block B, acting againft thefe four muft be marked 4, and the other part of it CF muft alfo be 4. Laftly, the weight acting againft thefe two, muft be 8. And then the power P is to the weight W, as 1 to 8 .

ABCD is another tackle with a runner BAD, A 43? being a fixed pulley; the two blocks \mathbf{B}, \mathbf{C}, are both movable. The rope DAB is fixed to the weight

Fig. weight at D , and to the block B . The rope PB 43. goes and returns about the pullies BC, and at laft is fattened to the block C . Let P be the power, mark it 1 , then the other parts of the rope between the blocks, muft alfo be 1 apiece. Then CI acting againft 3 , mult be 3 . And $A B$ is 4 , as it acts againft 4; likewife AD muft be 4 . Therefore the whole force that fuftains the weight W is 3 and 4s or 7 . And the power to the weight as 1 to 7 .

The following is a fort of Spanifb burton, A and F are two fixed pullies; \mathbf{C} and B two movable ones. The rope going from the power P, goes round C, B, and A , and is faftened to the block B. Another rope is faftened to the block B, and goes over the pulley F, and is fixed to the block C. Then marking the power P , 1 . Then each part of the rope, continued over C, B, and A to B again mult be each 1 . Then FC muft be 25 as it acts againft two parts; and likewife the other part of it FB muft be 2. Then the whole that lifts the weight W, is $\mathbf{1}+1+1+2=5$. And therefore the power is to the weight as I to 5 .

The friction between the pullies and blocks is fometimes confiderable. To remedy which, they mult be as large as they can conveniently be made, and kept oiled or greafed.

> P R O P. LI.
45. In the fcrew, if the power applied at E , be to the weight, preflure, E'c. at B ; as the diftance of two tbreads of the fcrew, taken parallel to the axis of. it, is to the circumference defcribed by the power at E ; then the weight and power will be in equilibrio.

A fcrew is an inftrument confifting of two parts AB, CD, fitting into one another. AB is the male fcrew, called the top or fpindle; this is a long cylindrical body, having its furface cut into ridges

and hollows, that run round it in a fpiral manner Fig: from one end to the other, at equal diftances; 45 . thefe rifings are called threads, and fo many revolutions as they make, fo many threads the fcrew contains. CD is the female fcrew, or the plate, thro' which the other goes; its concavity is cut in the fame manner as the male, fo that the ridges of the male may exactly fit the hollows of the female. By reafon of the winding of the threads, as the handle EF is turned one way or the othor, the male $A B$ goes further in or comes further out, of the female.

Let the point E of the handle, make one revolution, then the male AB will have advanced the diftance between one thread and another, of the fcrew. Therefore if G reprefent any weight, which the end B acts againft, it will be moved thro' the breadth of a thread, whilf the power moves thro ${ }^{\circ}$ a circumference whofe radius is EA. Therefore the velocity of G is to the velocity of E , as the breadth of a thread, to the circumference defcribed by E ; that is (by fuppofition) as the power at E , to the weight at G. Therefore $E \times$ velocity of E $=G \times$ velocity of G; and therefore their motions being equal, they will be in equilibrio.

Cor. By reafon of the friztion, if any weight is. to be removed by a fcreev; the power muft be to the weight; at leaft as the breadtb of two tbreads of the firew, to the circumference defcribed by the power; to keep the weight in equilibrio; and muft be mucb more to move it.

For in the fcrew there is fo much friction, that it will fuftain the weight when the power is taken away. And therefore the friction is as great or greater than the power. And therefore the whole power applied muft at leaft be doubled to produce any motion.

Screws with fharp threads have far more friction than thofe with fquare threads, and therefore move 2 body with more difficulty.

The fcrew, in moving a body, acts like an in: clined plane. For it is juft the fame as if an inclined plane was forced under a body to raife it; the body being prevented from flying back, and the bafe of the plane being driven parallel to the horizon.

The ufe of this power is very great. It is of great fervice for fixing feveral things together by help of fcrew nails; it is likewife very ufeful for fqueezing or preffing things clofe together, or breaking them; alfo for raifing or moving large bodies. The fcrew is ufed in preffes for wine, oil, or for fqueezing the juice out of any fruit. The very friction of this machine has its particular ufe, for when a weight is raifed to any hight; if the power be taken away, the fcrew will retain its pofition, and hinder the weight from defcending again by its friction, without any other power to fuftain it.

In the common fcrew, fuch as is here fuppofed; the threads are all one continued fpiral from one end to the other; but where there are two or more fipirals, independent of one another, as in the worm of a jack; you muft meafure between thread and thread of the fame fpiral, in computing the power.

PROP. LII.

In the endlefs fcrero, where the teeth of the worm 46. or fpindle AB , drives the wheel CD , by acizing againft the teeth of it. If the poweer applied at P , is to the weight W, acting upon the edge of the wheel at $\mathrm{C}:$: as the diftance of two tbreads or teeth, between fore fide and fore fide, taken along AB ; is to the circumference defcribed by the power P. Then the weigbt and power will be in equilibrio.

The endlefs or perpetual forewe is one that turns perpetually round the axis $A B$; and whofe teeth fit exactly into the teeth of the wheel $C D$, which are cut obliquely to anfwer them: So that as AB turns round, its teeth take hold of the teeth of the wheel $C D$, and turns it about the axis I, and raifes the weight W .

For by one revolution of the power at P, the wheel will be drawn forward one tooth; and the weight W will be raifed the fame diftance. Therefore the velocity of the power, will be to that of the weight; as that circumference, to one tooth: : that is (by fuppofition) as the weight W , to the power P . Therefore the power $\mathrm{P} \times$ velocity of $\mathrm{P}=\mathrm{W} \times$ velocity of W ; therefore their motions being equal, they will be in equilibrio.

Cor. If a weigbt N be fufpended at E on the axle EF ; then if the power P , is to the weight $\mathrm{N}:$: as the breadth of a tooth $\times \mathrm{EF}$, to the circumference defcribed by $\mathrm{P} \times \mathrm{CD}$. They will be in equilibrio.

Or if the poweer P ; is to the weigbt $\mathrm{N}:$: as radius of the axle EI, to the raaius of the bandle FP \times by the number of teeth in CD ; they will be in equilibrio.

For

Fig. For power P : weight $\mathrm{W}::$ I tooth : circumference. 46. and weight W :weight $\mathrm{N}:$: EF : CD. therefore $\mathrm{P}: \mathrm{N}::$ I tooth $\times E F: C D \times$ circumference. Or thus, whilf EF turns round once, P turns round as oft as CD has teeth; whence EI: BP \times number of teeth : : velocity of N : velocity of P : : P:N.

Scholium.

47. As the teeth of the wheel CD , muft be cut obliquely to anfwer the teeth or fcrew on AB ; fuppofing $A B$ to lie in the plane of the wheel $C D$; and therefore the wheel will be acted on obliquely by the fcrew AB. To remedy that, the fcrew $A B$ may be placed oblique to the wheel, in fuch a pofition, that when the teeth of the wheel are cut ftreight or perp. to its plane, the teeth of the fcrew AB , may coincide with them, and fit them. By that means the force will be directed along the plane of the wheel CD. Fig. 47 explains my meaning.

This machine is of excellent ufe, not only in itfelf, for raifing great weights, and other purpofes; but in the contruction of feveral forts of compound engines.
P R O P. LIII.
48. In the wedge ACD , if a power aciing perpendicular to the back CD, is to the force adting againft eitber fide AC , in a direction perpendicular to it; as the back CD , to eitber of the fides AC ; the wevge will be in equilibrio.

A wedge is a body of iron or fome hard fubftance in form of a prifm, contained between two ifoceles triangles, as CAD. $A B$ is the hight, and CD the back of it; AC, AD the fides.

Let $A B$ be perp. to the back $C D$, and $B E_{r} B F^{6}$, perp. to the fides AC, AD. Draw EG, FG parallel

Sect. IV. MECHANIC POWERS.
rallel to BF, BE; then all the fides of the paral-Fig. lelogram BEGF are equal. The triangles EGB, 48 . ADC are fimilar; for draw EOF which will be perp. to $A B$; then the right angled triangles AEB, AEO , are fimilar, and the angle $\mathrm{ABE}=\mathrm{AEO}=$ ACB ; that is, $\mathrm{GBE}=\mathrm{ACD}$, and likewife BGE $=\mathrm{ADC}$, whence CAD = BEG.
Now let BG be the force acting at B, in direction BA, perp. to CD ; then (Prop. IX.) the forces againft the fides AC, AD, will be in the directions EB, FB; and therefore EB, EG will reprefent thefe forces (by Prop. VIII.), when they keep one another in equilibrio. Therefore force BG applied to the back of the wedge, is to the force BE , perp. to the fide AC ; as BG to BE ; that is, (by fimilar triangles) as CD to CA.

Cor. 1. The power adting againft the back at B , is to that part of the force againft AC , which aiths parallel to the back CD ; as the back CD , is to the bight AB.

For divide the whole force $B E$ into the two $B Q$, OE ; the part EO acts parallel to CD ; therefore the force acting at B, is to the force in direction OE or BC ; as BG to OE ; that is, (by fimilar triangles) as $C D$ to $A B$.

Cor. 2. By reafon of the great frition of the wedge, the power at B , muft be to the reffifance againft one fide AC ; at leaft as twice the bafe CD , to the fide AC , taking the refiftance pe: p. to AC . Or as twice the bafe CD, to the bight , B , for the reffifance parallel to the base CD ; to overcome the refiftance. But the power muft be doubled for the refiftance againft loth fides.

For fince the wedge retains any pofition it is driven into; therefore the friction mult be at leaft equal to the power that drives it.

Cor.

MECHANIC POWERS.

Fig. Cor. 3. If you reckon the reffatance at both fides 48. of the wedge; then, if there is an equilibrium, the power at B , is to the whole refifance; as the back CD , to the fum of the fides, CA, AD, reckoning the refiftance perp. to the fides. Or as the back CD, to twice the bight AB , for the reffitance parallel to the baik CD.

This follows directly from the Prop. and Cor. 1.-

Scholium.

The principal ufe of the wedge is for the cleaving of wood or feparating the parts of hard bodies, by the blow of a mallet. The force impreffed by a mallet is vaftly great in comparifon of a dead weight. For if a wedge, which is to cleave a piece of wood, be preffed down with never fo great a weight, or even if the other mechanical powers be applied to force it in; yet the effect of them will fcarce be fenfible; and yet the ftroke of a fledge or mallet will force it in. This effect is owing very much to the quantity of motion the mallet is put into, which it communicates in an inftant to the wedge, by the force of percuffion. A great deal of the refiftance is owing to friction, which hinders the motion of the wedge; but the ftroke of a mallet overcomes it; upon which account the force of percuffion is of excellent ufe; for a fmart ftroke puts the body into a tremulous vibrating motion, by which the parts are difunited and feparated; and by this means the friction or fticking is overcome, and the motion of the wedge made eafy.

This mechanic power is the fimpleft of any; and to this, may be reduced all edge tools, as knives, axes, chiffels, fciffars, fwords, files, faws, fpades, fhovels, \&c. which are fo many wedges faftened to a handle. And alfo all tools or inftru-

This Prop. is the fame as Prop. XXX. in my large book of Mechanics, but demonftrated after a different way ; and both come to the fame thing, which evinces the truth thereof.

In this Prop. I have fhewn under what circumftance, the wedge is in equilibrio; and that is, when the power is to the force againft either fide; as the back, is to that fide. Therefore it muft be very ftrange, that any body fhould underftand it, as if I had faid, that the power is to the whole refiftance; as the back, is to one fide only. They that do this muif be blind or very carelefs.

SE CT. V.

The comparative Strength of Beams of Timber, and the Stress they fuffain. The Powers of Engines, their Motions, and Friction.

PROP. LV.

If a beam of wood AB, wobofe section is a paralLelogrami, be fupported at the ends A and B , by two props C, D. And a weight E be laid on the middle of it, to break it; the ftrength of it will be as the Square of the depth EF, when the breadth is given.

For divide the depth EF into an infinite numbben of equal parts at $n, 0, p, q, r, \& c$. Now the Strength of the beam confifts of the ftrength of all the fibres F , no, op, \&ce. And to break there fibres, is to break the beam. Alfo when the beam is stretched by the weight, the fibres $F n$, no, op, $\$ \mathrm{xc}$. are ftretched by the power of the bended levers AEF, AEn, AE o, \&cc. whole fupport is at E, and power at A. For the preffure at A being half the weight E, we mut fuppofe that preffure applied to A, to overcome the refiftances at F, n, $0, \& c$. Put the force or preffure at $A=P$, then \mathbf{P} acts againit all the fibres at $\mathrm{F}, n, 0, \& c$. by help of the bended levers AEF, AE, AE, \&c. But it is a known property of firings, fibres, and Such like expanding bodies; that the further they are stretched, the greater force they exert, in proportion to the length. Therefore when the beam breaks; that is, when the tenfion of the fibre En

Sea. V. STRENGTH OF TIMBER.
is at its utmoft extent; then thofe in the middle Fig. between F and E will have but half the tenfion, and 49 . thofe at all other diftances, will have a tenfion proportional to that diftance. This being fettled, let the utmoft tenfion of $n \mathrm{~F}$ be $=1$; then the tenfions at n, $0, p, \& c c$. will be $\frac{\mathrm{En}}{\mathrm{EF}}, \frac{\mathrm{E} \rho}{\mathrm{EF}}, \frac{\mathrm{E} p}{\mathrm{EF}} \& c$. and the feveral forces, thefe exert againft the point A, by means of the bended levers FEA, $n \mathrm{EA}$, oEA, \&zc. will be $\frac{\mathrm{FE}}{\mathrm{EA}}, \frac{\mathrm{E} n^{2}}{\mathrm{EF} \times \mathrm{EA}}, \frac{\mathrm{E} a^{2}}{\mathrm{EF} \times \mathrm{EA}}, \frac{\mathrm{E} p^{2}}{\mathrm{EF} \times \mathrm{EA}} \& \mathrm{c}$. and the fum of all is $=\frac{1}{E F \times E A} \times$ into $E F^{2}+E n^{2}$ $+\mathrm{E} \theta^{2}+\mathrm{E} p^{2} \& \mathrm{cc}$. to o. But (Arith. Inf. Prop. III.) the fum of the progreffion $\mathrm{EF}^{2}+\mathrm{E} n^{2}+\mathrm{Eo}^{2}$ $\& c$. to 0 , is $\frac{\frac{1}{3}}{} \mathrm{EF}^{3}$. Therefore the fum of all the forces exerted at A; that is, $P=\frac{1}{E F \times E A} \times$ $\frac{1}{3} \mathrm{EF}^{3}=\frac{\mathrm{EF}^{2}}{3 \mathrm{EA}} \cdot$ But $P \neq \frac{1}{2}$ weight E , therefore weight $E=\frac{2}{3} \times \frac{E^{2}}{E A}$, when the beam breaks.

In like manner for any other depth $\mathrm{E} p$, the weight e that would break it is $=\frac{2 \mathrm{E} p^{2}}{3 \mathrm{EA}}$. Whence the weight E to the weight e, is as EF^{2} to $\mathrm{E} p^{2}$; that is, as the fquares of the depths; for $\frac{2}{3 \mathrm{EA}}$ is a given quantity. Therefore the ftrength of the beams, are as the fquares of the depths.

Cor. I. Hence the jtrengtbs of feveral pieces of ibe fame timber, are to one anotber as the breadtbs and Squares of the deptbs.

For by this Prop. they are as the fquares of the depths when the breadth is given. And if the breadth be increafed in any proportion, it is evi-

STRENGTH OF TTMBER.

Fig. dent the firength is increafed in the fame propor49 tion. So that a beam of the fame depth being twice as broad is twice as ftrong, and thrice as broad is thrice as ftrong, \&c.
50. Cor. 2. If feveral beams of timber as AF of the Same. length, Jick out of a wall; their Arength to bear any weight W fufpended at the end, is as the breadib and Square of the depth.

This follows from Cor. I. only turning the beam upfide down, to make the weight W fufpended at A act downwards inftead of preffing upwards.
49. Cor. 3. If feveral pieces of timber be laid under one anotber, they will be no Aronger, than if they were laid fide by fide.

For not being connected together in one folid piece, they can only exert each its own ftrength, which will be the fame in any pofition.

Cor. 4. Hence the fame piece of timber is Aronger woben laid edgerways or with the flat fide up and doren, than when laid flat ways, or with the flat fide borizontal; and that in proportion of the greater breadth to the leffer.

For let B be the greater breadth, or the breadth of the flat fide; b the leffer breadth, being the narrow fide. Then the ftrength edge ways is $\mathrm{BB} b$, and flat ways $B b b$; and they are to one another as B to b.
PROP. LV.
49. If a beam of timber AB be fupported at both ends; and a given weight E laid on the middle of it; the ftrefs it fuffers by the weight, will be as its length AB .

For half the weight E is fupported at A , by the prop C; and the preffure at C is equal to it. And this preflure is always the fame whatever length
$A B$ is of. But it was fhewn in the laft Prop. that Fig. the preffure at A, breaks the fibres $F n, n o, o p, 8 x c$. 49. by means of the bended levers AEF, AEn, AEO, \&c. But (by Prop. XLV.) when the lengths EF, $\mathrm{E} n, \mathrm{Eo}, 8 \mathrm{c}$. are given, and the power at A alfo given; the effect at $\mathrm{F}, n, 0, \& \mathrm{c}$. is fo much greater, as the arm AE is longer; that is, the ftrefs at the fection EF , is proportional to the diftance $\mathrm{AE}^{\text {, }}$ or to the length of the beam AB.

Cor. I. If AF be a beam ficking out of a wall, 50 and a weight W bung at the end of it. The ftrefs it fuffers by the weight, at any point G , will be as the diffance AG.

For this has the fame effect, as in the eafe of this Prop: only turning the beam upfide down. Or thus, fuppofe AHG to be a bended lever, whofe fulcrum is H ; then fince GH is given, and the weight W ; therefore by the power of the lever, the longer AH is, the more force is applied at G, or any other points, in GH, to feparate the parts of the wood; and therefore the ftrefs is as AG.

Cor. 2. Therefore, inflead of a weight, if any force be applied at the end A , of the lever AF ; the ftrefs at any part G , will be as the force, and diftance AG.

For augmenting the force, the ftrefs is increafed in the fame ratio.

Cor. 3. Hence alfo if any weigbt lie upon the 49. middle of a borizontal beam; the ftrefs there will be as the rveight and length of the beam.

For if the weight be increafed, the ftrefs will be increafed proportionally, all other circumftances remaining the fame.

Cor. 4. The ftress of beams by their own weight, will be as the Squares of the lengtbs.

For here the weight is as the length.

$$
\mathrm{G}_{3} \quad \mathrm{PROP}
$$

PR O P. LVI. If AB be a beam of timber wobofe length is given; and supported at the ends A and B ; and if a given weight W be placed at any point of it G . The frees of the beam at G , will be as the rectangle AGB.

Let the given weight be W , then (Cor. 3. Prop. XLV.) the weight W is equal to the preffure at both A and B. And (Cor. 2. Prop. XXXI.) preffare at \dot{A} : preffure at $B:: B G: A G$, and prof. A : pref. $A+$ pref. $B:: B G: B G+A G$; that is, pref. $A:$ weight $W:: B G: A B$, therefore preflure at $A=\frac{B G}{A B} W$, and this is the force re-acting at A. But (Prop. IV. Cor. 2.) the ftrefs at G by this force acting at the diftance $A G$, is as the force multiplied by $A G$; that is, as $\frac{A G \times B G}{A B} \times W$. But W and $A B$ are given, and therefore the ftrefs at G is as $A G \times$ ${ }^{\prime} B$.

Cor. 1. The greatest fires of a beam is when the weight lies in the middle.

For the greateft rectangle of the parts, is in that point.

Cor. 2. Tide fires at any point P by a weight at G ; is equal to the fiefs at G , by the fame weight at P .

For when the weight is at W, the ftrefs at G is $A G \times G B$, and the ftrefs at $P=\frac{B P}{B G} \times$ the ftrefs at $G=\frac{B P}{B G} \times A G \times G B=B P \times A G$. Again, when the weight is at P , the ftrefs at P is $\mathrm{AP} \times \mathrm{PB}$; and the ftrefs at $G=\frac{A G}{A P} \times$ lat ftrefs $=\frac{A G}{A P} \times$ $\mathrm{AP} \times \mathrm{PB}=\mathrm{AG} \times \mathrm{PB}$, the fame as before.

PROP. LVII.

If the diftance of the walls AD and BC be given, 52, and AB , AC be two beams of timber of equal thickwe/s; the one borizontal, the otber inclined. And if two equal weights \mathbf{P}, Q, be fuspended in the midille of them; the ftrefs is equal in both, and the one will as foon treak as the other, by thefe equal weights.

For (Prop. XIV.) AC : AB : : weight \mathbf{P} : $\frac{\mathrm{AB}}{\mathrm{AC}}$ the weight the beam AC fuftains. And (Cor. 3 . Prop. LV.) the ftrefs upon $A C$ is $\frac{A B}{A C} P \times A C$ or $A B \times P$; and the ftrefs on $A B$ is $Q \times A B$, which is equal to $A B \times P$, becaufe the weights P, Q are equal. Therefore, the ftrefs being the fame, and the beams being of equal thicknefs, one will bear as much as the other, and they will both break together.

Cor. $\mathbf{1}$. If the beams be loaded witb weigbts in any otber places in the fape perpendicular line as \mathbf{F}, G; they will bear equal jtrefs, and one will as foon break as tbe otber.

For they are cut into parts fimilar to one another; and therefore ftrefs at $\mathrm{F}:$ ftrefs by $\mathrm{P}:$: AFC : $\frac{1}{4} \mathrm{AC}^{2}:: \mathrm{AGB}: \frac{\mathrm{AB}^{2}}{4}::$ frefs by $\mathrm{B}:$ ftrefs by Q or ftrefs by P . Therefore ftrefs at $\mathrm{F}=\mathrm{ftrefs}$. at B.

Cor. 2. If the two beams be loaded in proportion to their lengtbs; the Arefs by tbefe weigbts, or by their own weigbts, will be as their lengtbs; and therefore the longer, that ftands alope, will fooner break. G 4 For

STRESS OF TIMBER.

Fig. For the ftrefs upon $A C$ was $A B \times P$, and the 52. ftrefs on $A B$ was $A B \times Q$; but fince P and Q are to one another as $A C$ and $A B$, therefore the ftrefs on $A C$ and $A B$ will be as $A B \times A C$ and $A B \times$ $A B$; that is, as $A C$ to $A B$. And in regard to their own weights, thefe are alfo proportional to their lengths.

PROP. LVIII.

53. Let AB, AC, be two beams of timber of equal lengtb and tbickness, the one borizontal the other fet floping. And if CD be perp. to AB , and they be loaded in the middle with two weights P, Q, which are to one another as AC to AD . Then the frefs will be equal in both, and one will as foon break as the otber.

For (Prop. XIV.) AC : AD : : P : $\frac{\mathrm{AD}}{\mathrm{AC}} \mathrm{P}=$ preffure of P in the middle of $A C$. And by fuppofition, $A C: A D:: P: Q$; therefore $\frac{A D}{A C} P=$ Q , the weight in the middle of $A B$. Therefore the forces in the middle of the two beams are the fame; and the lengths of the beams being the fame, therefore (Prop. LV.) the ftrefs is equal upon both of them; and being of equal thicknefs, if one breaks the other will break,

Cor. If tbe weights \mathbf{P}, \mathbf{Q}, be equal upon the two equal beams AB, AC. Tike Atrefs upon AB wiil be to the ftefs upon AC , as AB or AC to AD . The fame bolds in regard to their own weights.

For the weight Q is increafed in that proportion,

Scholium.

Many more propofitions relating to the ftrength of timber might be inferted; as for example, if a weight
weight was difpofed equally thro' the length of Fig. the beam AB (fig. 5 I .), fupported at both ends; 53 . the ftrefs in any point G, is as the rectangle AGB. And the ftrefs at any point G is but half of the ftrefs it would fuffer, if the whole weight was fufpended at G. Alfo if AF (fig. 50.) be a beam fixed in a wall at one end, and a weight be difperfed uniformly thro' all the length of it. The ftrefs at any point G, with that weight (or with its own weight, if it be all of a thicknefs), will be as AG fquare, the fquare of the diftance from the end. And the ftrefs at any point G by a weight fufpended at A, will be double the fliefs at the fame point G, when the fame weight is difperfed uniformly "thro' the part AG. They that would fee thefe and fuch like things demonftrated, may confult my large book of Mechanics, to which I refer the reader.

P R O P. LIX.

If feveral pieces of timber be applied to any mecbanical ufe where firength is required; not only the parts af the fame piece, but the feveral pieces in regard to one anotber, ought to be fo adjufted for bignefs; thät the ftrength may be always proportional to the frefs they are to endure:

This Prop. is the foundation of all good Mechanifm, and ought to be- regarded in all forts of tools and inftruments we work with, as well as in the feveral parts of any engine. For who that is wife, will overload hinfelf with his work tools, or make them bigger and heavier than the work requires? neither ought thiey to be fo flender as not to be able to perform their office. In all engines, it muft be confidered what weight: every beam is. to carry, and proportion the ftrength accordingly. All le-

Fig. vers muft be made ftrongeft at the place where they are frained the moft; in levers of the firf kind, they muft be ftrongeft at the fupport. In thofe of the fecond kind, at the weight. In thofe of the third kind, at the power, and diminifh proportionally from that point. The axles of wheels and pullies, the teeth of wheels, which bear greater weights, or act with greater force, muft be made fronger. And thofe lighter, that have light work to do. Ropes muft be fo much ftronger or weaker, as they have more or lefs tenfion. And in general, all the parts of a machine muft have fuch a degree of frength as to be able to perform its office, and no more. For an excefs of ftrength in any part does no good, but adds unneceffary weight to the machine, which clogs and retards its motion, and makes it languid and dead. And on the other hand, a defect of trrength where it is wanted, will be a means to make the engine fail in that part, and go to ruin. So neceffary it is to adjuft the ftrength to the ftrefs, that a good mechanic will never neglect it ; but will contrive all the parts in due proportion, by which means they will taft all alike, and the whole machine will be difpofed to fail all at once. And this will ever diftinguif a good mechanic from a bad one, who either makes fome parts fo defective, imperfect and feeble as to fail very foon; or makes others, fo ftrong or clumfey, as to out laft all the reft.

From this general rule follows
Cor. 1. In feveral pieces of timber of the fame fort, or in differesst parts of the fame piece; the breadth multiplied by the fquare of the depth, muft be as the length multiplied by the weight to be born.

For then the ftrength will be as the ftrefs.
Cor. 2. Tibe breadth mutiplied by the fquare of the depth, and divided by the product of the lengtb and eveight, muft be the fame in all.

Cor.

Cor. 3. Hence may be computed the frength of tim- Fig. ber proper for feveral ufes in building. As,

1. To find the dimenfiens of joifts and boards for flooring. Let b, d, l be the breadth, depth and length of a joift, $n=$ number of them, $x=$ their diftance, $g=$ depth of a board, $w=$ weight ; then $n b d d=$ ftrength of all the joifts, and wol $=$ ftrefs on them, alfo $\mathrm{nlgg}=$ ftrength of the boards, and wx their ftrefs; therefore $\frac{n b d d}{w l}=\frac{n l g g}{w x}$; and x $=\frac{l \mathrm{lgg}}{b d d}$, for the diftance of the joifts, or the length of a board between them. Or $b=\frac{l \mathrm{lgg}}{d d x}$, or $d d=$ $\frac{l l g g}{b x}$, and fo on, according to what is wanted.
2. To find the dimenfions of fquare timber for the roof of a houfe. Let r, s, l be the length or the ribs, fpars and lats, fo far as they bear; x, y, z their breadth or depth, the diftances of the lats, $w=$ weight upon a rib, $c=$ cofine of elevation of the roof. Then by reafon of the inclined plane, $\frac{l w}{r} \times c=$ weight upon a fpar. And $\frac{l m w}{r s}=$ weight upon a lat: for the ribs and lats lie horizontally. Therefore (Cor. 2.) $\frac{x^{3}}{w r}=\frac{y^{3}}{\frac{s l z}{r} \times c}=\frac{z^{3}}{l \times \frac{l m w i}{r s}}$. Whence $x^{3}=\frac{r r y^{3}}{c l s}$, and $x^{3}=\frac{r r z^{3}}{l l n}$. Hence if any one x, y, or z be given, and all the relt of the quantities; the other two may be found. Or in general, any two being unknown, they may be found, from having the reft given.

For example, let $r=9$ feet, $s=4$ feet, $l=$ 15 inches, $n=11$ inches, $c=.707$ the cofine of 45°, the pitch of the roof. And affume $y=2^{\frac{2}{2}}$ inches;
64. 3. To find the curve $A C B$, into the form of which, if a joift be cut, on the upper or under fide; and having the two fides parallel planes, which are perp. to the horizon. That the faid joift fhall be equally ftrong every where to bear a given weight, fuffended on it.

Let the weight be placed in the ordinate CD ; and the breadth of the beam. and the weight being given; then (Prop. LIV.) the ftrength at C is as CD ${ }^{2}$: And (Prop. LVI.) the ftrefs is as ADB. Therefore that the ftrength may be as the ftrefs, CD^{2} is as the rectangle ADB ; and therefore the curve $A C B$ is an ellipfis.
55. 4. To find the figure of a beam $A B$, fixed with one end in a wall, and having a given weight W fufpended at the other end B; and being every where of the fame deph; it may be equally ftrong throughout.

Let CD be the breadth at C ; then (Prop. LIV.) the ftrength is as CD. And (Cor. 1. Prop. LV.) the ftrefs is as CB. Therefore CD is every where as CB, and therefore CDB is a plane triangle. And the beam is a prifm, whofe upper and under fides are parallel to the horizon.
56. 5: To find the figure of a beam $A B$, fticking with one end in a wall; and of a given breadth; having a weight W fufpended at the end B ; fo that it may be equally ftrong throughout.

Let CD be the depth at C. Then fince the breadth is given, the ftrength is as CD^{2}. And the ftrefs as DB ; therefore CD^{2} is as DB. Whence CD is a common parabola.
6. To find the figute of a beam $A B$, of the 57. fame breadth and depth, fticking in a wall with one otherend B; fo that it may be equally ftrong through- 57 . out.

Let CD be the thicknefs at O . Then the ftrength is as CD', and the ftrefs is as BO. Therefore BO is as CD^{3} or as CO^{3}. And confequently ACB is a cubic parabola, whofe vertex is at B.
7. In like manner, if CBD be a beam fixed with 58 . one end in a wall, and all the fides of it be cut into the form of a concave parabola, whofe vertex is at B . It will' be equally ftrong throughout for fupporting its own weight.
For putting $\mathrm{BO}=x, \mathrm{CO}=y$, then by nature of the curve, ay $=x x$. But the folidity of CBD is 3.1416yyx. And the center of gravity I, is diftant

5 from B , therefore $\mathrm{OI}=\frac{1}{6} x$. Now CD^{3} or $\frac{5}{6} x$ from B , therefore $\mathrm{OI}=\frac{1}{6} x$. Now CD^{3} or $8 y^{3}=$ ftrength at O . And $\mathrm{CBD} \times \mathrm{OI}$ or $\frac{3.1416 y y x}{5} \times$ $\frac{1}{6} x=$ ftrefs. Therefore the ftrength : to the ftrefs: : is as $8 y^{3}:$ to $\frac{3.1416 y^{2} x x}{30}:: 8 y: \frac{3.1416 x x}{30}:: 8 y:$ $\frac{3.1416 a y}{30}:: 340: 3.1416 a$, that is, in a given ratio. And as this happens every where, the folid is equally ftrong in all parts.

I muft take notice here that the 116 th figure in my large book of Mechanics, is drawn wrong. It fhould be concave inftead of being convex.
8. Again, if AB be the fpire of a church which 59. is a folid cone or pyramid; it will be equally ftrong throughout for refifting the wind. For the quantity of wind falling on any part of it ACD, will be as the fection ACD . Therefore let $\mathrm{AO}=x$, Ci) $=y$. And $x=a y$, then the ftrength at $\mathrm{O}=$ y^{3}, and if I be the center of gravity of $A C D$, then that is, in'a given ratio. Therefore the fpire is equally ftrong every where.

Scholium.

It is all along fuppofed that the timber, \&c. is of equal goodnefs, where thefe proportions for ftrength are made. But if it is otherwife, a proper allowance muft be made for the defect.

In thefe Propofitions, I have called every thing Strength, that contributes in a direct proportion to refift any force acting againft a beam to break it; and 1 call Strefs, whatever weakens it in a direct proportion. But the whole may be referred to the article of ftrength; for what I have called ftrefs may be reckoned ftrength in an inverfe ratio. Thus the ftrength of a piece of timber may be faid to be directly as the breadth and fquare of the depth, and inverfely as its length, and the weight or force applied; and that is equivalent to taking in the ftrefs. But I had rather keep them diftinet, and refer to each of them their proper effects, as I have along done in the foregoing examples.
A piece of wood a foot long, and an inch fquare, will bear as follows; oak from 320 to 1100 ; elm from 3 Io to 930 ; fir from 280 to 770 pounds, according to the goodnefs.

PROP. LX.

In any machine contrived to raife great weigbts; if the power applied, be to the weight to be raifed; as the velocity of the weight, to the velocity of the power; the power will only be in equilibrio with the weeight. Thberefore to raife it, the power muft be fo far increafed, as to overcome all the frietion and refiftance arifing from th: engine or otherwife; and then the power will be able to raife the weight.

A man would be much miftaken, who fhall make an engine to raife a great we e^{2}, and give his power no greater velocity, in regard to the velocity of the weight; than the quantity of the weight has in regard to the quantity of the power. For when he has done that, his weight and power will but have equal quantities of motion, and therefore they cannot fet one another a moving, but muft always remain at reft. It is neceflary then, that he do one of thefe two things. I. That he apply a power greater than in that proportion, fo_{0} much as to overcome all the friction and other accidental refiftance that may happen: and in fome engines thefe are very great. Or 2. He mut fo continue his engine, that the velocity of the power, which fuppofe he has given, may be fo much greater than the velocity of the weight; as the quantity of the weight, friction, and refiftance and all together, is greater than the power. This being done, the greater power will always overcome the leffer, and his engine will work.

If a man does not attend to this rule, he will be guilty of many abfurd miftakes, either in attempting chings that are impoffible, or in not applying means proper for the purpofe Hence it is that engines contrived for mines and water-works fo of-

Fig. ten fail; as they muft when either the quantity or velocity of the power is too little; or which is the fame thing, when the velocity of the weight is too great, and therefore would require more power than what is propofed. As the weight is to move now, the confequence is, that it will be fo much a longer time in moving thro' any fpace. But there is no help for that. For as much as the weight to be raifed is the greater, the time of raifing it will be fo much greater too.

Cor. 1. Hence in raifng any weight, wbat is gained in power is lof in time. Or the time of rifing thro' any bight will be fo much longer as the weight is greater.

If the power be to the weight as 1 to 20 , then the fpace thro' which the weight moves will be 20 times lefs, and the time will be 20 times longer in moving thro' any fpace, than that of the power. The advantage that is gained by the ftrength of the motion, is loft in the flownefs of it. So that tho' they increafe the power, they prolong the time. And that which one man may do in 20 days, may be done by the ftrength of twenty men in one day.

Cor. 2. The quantity of motion in the weight is not at all increafed by the engine. And if any given quantity of power be immediately applied to a body at liberty, it will produce as mucb motion in it, as it coould do by belp of a macbine.

PROP. LXI.

If an engine be compofed of feveral of the fimple mechanic powers combined together; it will produce the fame efferi, fetting afide friction; as any one fimple mectbanic power would do, which bas the fame power or force of asing.

For let any compound engine be divided into all the fimple powers that compofe it. Then the force

Sect. V. COMPOUND ENGINES.
or power applied to the firt part, will caufe it to Fig. act upon the fecond with a new power, which would be deemed the weight, if the machine had no more parts. This new power acting on the fecond part, will caufe it to act upon the third part; and that upon a fourth, and fo on till you come at the weight, which will be acted on, by all thefe mediums, juft the fame as by a fimple machine whofe power is equal to them all.

Cor. I. Hence a compound macbine may be made, which fall bave the fame power, as any fingle one propofed.

For if a lever is propofed whofe power is roo to I; two levers acting on one another will be equivalent to it, where the power of the firt is as 10 to 1 , and that of the fecond alfo as io to 1 , or the firft 20 to 1 , and the fecond 5 to I; or any two numbers, whofe product is 100 .

Again, a wheel and axle whofe power is as 49 to 1 , may be retolved into two or more wheels with teeth, to have the fame power; for example, make two wheels, fo that the firt wheel and pinion be as 8 to 1 , and the fecond as 6 to 1 . They will have the fame effeci as the fingle one. Or break it into three wheels, whofe feveral powers may be 4 to 1 , and 4 to 1 , and 3 to 1 .

If a fimple combination of pullies be as 36 to I; you may take three combinations to act upon one another, whofe powers are 3 to 1,3 to 1 , and 4 to 1 .

And after the fame manner it is to be done in machines more compounded.

And this is generally done to fave room. For when an engine is to have great power, is is hardly made of one wheel, it would be fo large; but by breaking it into feveral wheels, after this manner; it will go into a little room, and have the

Hi fame

Fig. fame power as the other. All the inconvenience is, it will have more friction; for the more parts acting upon one another, the more friction is made.

Cor. 2. Hence alfo it follows, that in any compound machine, its power is to the weight, in the compound ratio of the power to the weigbt in all the fimple macbines that compose it.

Cor. 3. Hence it will be no difficult matter to contrive an engine that Ball cuercome any force or refiftance affigned.

For if you have the quantity of power given, as well as of the weight or refiftance; it is but taking any fimple machine as a lever, wheel, \&c. fo that the power may be to the weight in the ratio affigned, adding as much to the weight as you judge the friction will amount to. When this fimple machine is obtained; break it or refolve it into as many other fimple ones as you think proper; fo that they may have the fame power.

And as to the feveral fimple machines, it matters not what fort they are of, as to the power; whether they be levers, wheels, pullies, or fcrews; but fome are more commodious than others for particular purpofes; which a mechanic will find out beft by practice. In general, a lever is the moft ready and fimple machine to raife a weight a fmall diftance; and for further diftances, the wheel and axle, or a combination of pullies; or the perpetual forew. Alfo thefe may be combined with one another; as a lever with a wheel or a fcrew, the wheel and axle with pullies, pullies with pullies, and wheels with wheels, the perpetual fcrew and the wheel. But in general a machine fhould confift of as few parts as is confiftent with the purpofe it is defigned for, upon account of leffening the friction: and to make it ftill lefs, the joints muft

Sect. V. COMPOUND ENGINES.

be oiled or greafed. All parts that act on one Fig. another muft be polifhed fmooth. The axles or fpindles of wheels muft not fhake in the holes, but run true and even. Likewife the larger a machine is, if it be well executed, the better and truer it will work. And large wheels and pullies, and fmall axles or fpindles have the leaft friction.

The power applied to work the engine may be men or horfes; or it may be weight or a fpring; or wind, water, or fire; of which one muft take that which is moft convenient and cofts the leaft. Wind and water are beft applied to work large engines, and fuch as muft be continually kept going. A man may act for a while againft a refiftance of 50 pounds ; and for a whole day againit 30 pounds. A horfe is about as ftrong as five men.
If two men work at a roller, the handles ought to be at right angles to one another.

When a machine is to go regular and uniform, a heavy wheel or fly muft be applied to it.

Scholium.

Two things are required to make a good engineer. I. A good invention for the fimple and eafy contrivance of a machine, and this is to be attained by practice and experience. 2. So much theory as to be able to compute the effect any engine will have; and this is to be leained from the principles of Mechanics.

> P R O P. LXII.

The friztion or refiftance arifing by a body moving upon any furface, is as the roughnefs of the furface, and nearly as the weigbt of the body; but is not much increafed by the quantity of the furface of the moving body, and is fometbing greater with a greater velocity.

It is matter of experience that bodies meet with a great deal of refiftance by fiding upon one ano-
H_{2} ther,

Fig. ther, which cannot be entirely taken away, tho' the bodies be made never fo fmooth : yet by fmoothing or polifhing their furfaces, and taking off the roughnefs of them, this refiftance may be reduced to a fmall matter. But many bodies, by their natural texture, are not capable of bearing a polifh; and thefe will always have a confiderable degree of refiftance or friction. And thofe that can be polifhed, will have fome of this refiftance arifing from the cohefion of their furfaces. But in general, the fmoother or finer their furfaces, the lefs the friction will be.

As the furfaces of all bodies are in fome degree rough and uneven, and fubject to many inequalities; when one body is laid upon another, the prominent parts of one fall into the hollows of the other; fo that the body cannot be moved forward, till the prominent parts of one be raifed above the prominent parts of the other, which requires the more force to effect, as thefe parts are higher; that is, as the body is rougher. And this is fimilar to drawing a body up an inclined plane, for thefe protuberances are nothing elfe but fo many inclined planes, over which the body is to be drawn. And therefore the heavier the body, the more force is required to draw it over thefe eminencies; whence. the friction will be nearly as the weight of the body.
But whillt the rouchnefs remains the fame, or the prominent parts remain of the fame hight, there will always be required the fame force, to draw the fame weight. And the increafing of the furface, retaining the fame weight, can add nothing to the refiftance on that account ; but it will make fome addition upon other accounts. For when one furface is dragged along another, fome part of the reliftance arifes from fome parts of the moving furface, taking hold of the parts of the other, and traring them off; and this is called wearing. And there-

Sect. V. F R I C T I O N. wor therefore this part of the friction is greater in agreat- Fig. er furface, in proportion to that furface. There is. likewife in a greater furface, a greater force of cohefion, which ftill adds fomething to the friction. But the two parts of the friction, arifing from the wearing and tenacity, are not increafed by the velocity: but the other part, of drawing them over inclined planes, will increafe with the velocity. So that in the whole, the friction is fomething increafed by the quantity of the furface, and by the velocity, but not much. But more in fome bodies than others, according to their particular texture.

Cor. I. Hence there can be no certain rule, to efiwate the friztion of bodies; tbis is a matter that can only be decided by experiments. But it may be obferved, that, ceteris paribus, bard bodies will bave lefs refifance than Softer; and bodies oited or greafed, will bave far lefs.

For the farticles of hard bodies, cannot fo well take hold of one another to tear themfelves off. And when a furface is oiled, it is the fame thing as if it run upon a great number of rollers or fpheres.

Cor. 2. Hence alfo a metbod appears of meafuring. the friciion of a body Jiding upon another body, by belp of an inclined plane.

Take a plank CB of the fame matter, raife it at 60. one end C to high, till the body whofe friction is fought, being laid at C , fhall juft begin to move down the plane CB. Then the weight of the body, is to the friction as the bafe $A B$, to the hight AC of the plane. For the preffure againft the plane is the part of the weight that caufes the friction, and the tendency down the plane is equal to the friction. And (Prop. XIV.) that preffure is. to the tendency as AB to AC .
H_{2}
rig. If you puih the body from C downward, and 60. obferve it to keep the fame velocity thro' D to B; then you will have the friction for that velocity. If it increafes its velocity, lower the end of the plank \mathbf{C}; if it grows hower, raife the end C , till you get the body to have the fame velocity quite thro' the plane. And fo you will find what elevations are proper for each velocity; and from thence the ratio of AB to AC , or of the weight to the friction.

There is a way to make the experiment, by drawing the body along a horizontal plane, by weights hung at a ftring, which goes over a pulley; but the method here defcribed is more eafy and fimple.

Scholium.

From what has been before laid down, it will be eafy to undertand the nature of engines, and how to contrive one for any parpofe affigned. And likewife having any engine before us, we can by the fame rules, compute its powers and operacions.

Engines are of various kinds; fome are fxed in a particular place, where they are to act; as windmills and water-mills for corn, fire engines for drawing water, gins for coal pits, many forts of mills; pumps, cranes, \&c. others are movable from one place to another, and may be carried to any place where they are wanted, as blocks, pullies and tackles for raifing weights, the lifting jack, and lifting ftock, clocks, watches, fmall bellows, fcales, fteelyards, and an infinite number of others. Another fort of engines are fuch as are made on purpofe to move from one place to another, fuch as boats, fhips, coaches, carriages, waggons, \&c. If any of thefe are urged forward by the help of levers, wheels, \&c. By having the acting power given, the moving force that drives it forward, is eafily found by the propercies of thefe machines. Only obferve, if the firft acting

Sect. V. WHEEL CARRIAGES.

power be external, as wind, water, horfes, \&c. Fig. you muft not forget to add or fubtract it, to or from the moving force before found; according as that firft acting power confpires with, or oppofes the motion of the machine; and the refult is the true force it is driven forward with. I have only room to defcribe a very few engines, but thofe that defire it may fee great variety in my large book of Mechanics.

A WHEEL CARRIAGE.

$A B$ is a cart or carriage, going upon two wheels $6 \mathbf{I}$. as $C D$, and fometimes upon four, as all waggons do. The advantages of wheel carriages is fo great, that no body who has any great weight to carry, will make ufe of any other method. Was a great weight to be dragged along upon a fledge or any fuch machine without wheels, the friction would be fo great, that a fufficient force in many cafes could not be got to do it. But by applying wheels to carriages, the frittion is almoft all of it taken away. And this is occafioned by the wheels turning round upon the ground, inftead of dragging upon it. And the reafon of the wheel's turning round is the refiftance the earth makes againft it at O where it touches. For as the carriages goes along, the wheel meets with a refiftance at the bottom O , where it touches the ground; and meeting with none at the top at C , to balance it; that force at O muft make it turn round in the order ODC, fo that all the parts of the circumference of the wheel are fucceffively applied to the earth. In going down a fteep bank it is often neceffary to tie one wheel faft, that it cannot turn round, this will make it drag; and by the great refiftance it meets with, ftops the too violent motion, the carriage would otherwife have, in defcending the hill.

WHEEI, CARRIAGES.

But altho' all forts of wheels very much diminifh the friction; yet fome have more than others; and it may be obferved that great wheels, and fmall axles have the leaft friction. To make the friction as little as poffible, fome have applied friction wheels, which is thus; EG is the friction wheel running upon an axis I which is fixed in the piece of timber ES, which timber is fixed to the fide of the carriage. KL is the axle of the carriage, which is fixed in the wheel CD, fo that both turn round together. Then inftead of the carriage lying upon the axle KL, the friction wheel FG lies upon the axle; fo that when the wheel CD turns round, the axle caufes the friction wheel, with the weight of the carriage upon it, to turn round the center I, which diminifhes the friction in proportion to the radius IG: and there is the fame contrivance for the wheel on the other fide. But the wheel CD need not be fixed to the axle; for it may turn round on the axle KL, and alfo the axle turn round under the carriage.

In paffing over any obitacles, the large wheels have the advantage. For let MN be an obitacle; then drawing the wheel over this obftacle, is the fame thing as drawing it up the inclined plane MP, which is a tangent to the point M; but the greater the wheel CD is, the lefs is that plane inclined to the horizon.

Likewife great wheels do not fink fo deep into the earth as fmall ones, and confequently require lefs force to pull them out again.

But there are difadvantges in great wheels; for in the firt place, they are more eafily overturned; and fecondly, they are not fo eafy to turn with, in a ftrait road as fmall wheels.

The tackle of any carriage ought to be fo fixed, that the horfe may pull partly upwards, or lift, as well as pull forwards; for all hills and inequalities

Sect. V. H A N D M I L L. 105

in the road, being like fo many inclined planes, Fig. the weight is moft eafily drawn over them, when 6I. the power draws at an equal elevation.

A carriage with four wheels is more advantageous, than one with two only, but they are bad to turn; and therefore are obliged to make ufe of finall fore-wheels. Broad wheels which are !ately come into fafhion, are very advantageous, as they fink but little into the earth. But there is a difadvantage attends them, for they take up fuch a quantity of dirt by their great breadth, as fenfibly retards the carriage by its weight, and the like may be faid of their own weight.

The under fide of the axle where the wheels are, muft be in a right line; otherwife if they flant upwards, the weight of the carriage will caufe them to work toward the end, and prefs againft the runners and lin pin. And as the ends of the axle are conical, this caufes the wheels to come nearer together at bottom, and be further diftant at the top; by which means the carriage is fooner overturned. To help this, the ends of the axle mult be made as near a cylindrical form as poffible, to get the wheels to fit, and to move free.

A HAND MILL.

Fig. 62. is a hand mill for grinding corn, A, B 62. the ftones included in a wooden cafe. A the upper fone, being the living or moving ftone. B the lower ftone, or the dead ftone, being fixed immovable. The upper ftone is 5 inches thick, and a foot and three quarters broad; the lower ftone is broader. C is a cog-wheel, with 16 or 18 cogs; DE its axis. F is a trundle with 9 rounds, fixed to the axis G, which axis is fixed to the upper ftone A , by a piece of iron made on purpofe. H is the hopper, into which the corn is put; 1 the fhoe, to carry the corn by little and little thro' a hole at

Fig. K, to fall between the two ftones. L is the mill 62. eye, being the place where the flour or meal cones out after it is ground. The under ftone is fupported by ftrong beams not drawn here. And the fpindle G ftands on the beam MN, which lies upon the bearer O, and O lies upon a fixed beam at one end, and at the other end has a ftring fixed, and tied to the pin P. The under fone is not flat, but rifes a little in the middle, and the upper one is a little hollow. The ftones very near touch at the out fide, but are wider towards the middle to let the corn go in.

When corn is to be ground, it is put into the hopper H , a little at a time, and a man turns the handle D , which carries round the cog-wheel C , and this carries about the trundle F, and axis G, and fone A. The axis G is angular at K; and as it goes round, it fhakes the fhoe I, and makes the corn fall gradually thro' the hole K. And the upper ftone going round grinds it, and when ground it comes out at the mill eye L, where there is a fack or tub placed to receive it. Another handle may be made at E like that at D , for two men to work, if any one pleafes. In order to make the mill grind courfer or finer, the upper ftone A may be lowered or raifed, by means of the ftring going from the bearer O ; for turning round the pin P , the flring is lengthened or fhortened, and thereby the timbers O, M are lowered or raifed, and with them the axle G and ftone A. For the fpindle G goes thro' the ftone B, and runs upon the beam MN. The fpindle is made fo clofe and tight, by wood or leather, where it goes thrc the under ftone, that no meal can fall thro'. The under fide of the upper ftone is cut into gutters in the manner reprefented at Q . It is a pity fome fuch like mills are not made at a cheap rate for the fake of the poor, who are much diftreffed by the roguery of the millers.

Sect. V. T H E C R A N E. 10y
Fig. 63. is a fort of crane, BC an upright poft, Fig. $A B$ a beam fixed horizontally at top of it; thefe 63. turn round together on the pivot $\mathrm{C}_{\text {, }}$ and within the circle S, which is fixed to the top of the frame PQ . EF is a wooden roller, or rather a roller made of thin boards, for lightnefs, and all nailed to feveral circular pieces on the infide. GH a wheel fixed to the roller, about which goes the rope GR. IK, LN, two other ropes; fixed with one end to the crofs piece $A B$, and the other end to the roller EF. W a weight equal to the weight of the wheel and roller, which is faftened ou a rope which goes over the pulley O, and then is faftened to a collar V, which goes round the roller. ET is another rope with a hook at it to lift up any weight, the other end of the rope being fixed to the roller; here are in all five ropes:

To raife any weight as M , hang it upon the hook T, then pulling at the rope R which goes about the wheel GH , this caufes the wheel and roller to turn round, and the ropes IK, LN to wind about it, by which means the wheel and axle rifes; and by rifing, folds the rope TE about the roller the contrary way, and fo raifes the weight M. When the weight M is raifed high enough, a man muft take hold of the rope T with a hook. by which the whole machine may be drawn about, turning upon the centers C and S. And then the weight M may be let down again. The weight of the wheel and roller do not affect the power drawing at R, becaufe it is balanced by the weight W. There is no friction in this machine but what is occafioned by the collar V , and the bending of the ropes. And the power is to the weight in this crane, as the diameter of the soller to the radius of the wheel GH.

Fig. An ENGINE for raifing Weights.
64. Fig. 64. is an engine compofed of a perpetual fcrew $A B$, and a wheel DE with teeth, and a fingle pulley H . FG is an axle, about which a rope goes, which lifts the pulley and weight W . BC is the winch, to turn it round withal. As the fpindle $A B$ is turned about, the teeth of it takes the teeth of the wheel DE, and turns it about, together with the axle FG, which winds up the rope, and raifes the pulley H , with the weight W . The power at C , is to the weight W , as diameter FG \times by the breadth of one tooth, is to twice the diameter DE \times circumference of the circle defribed by C.

A FULLING MILL.

65. Fig. 65. is a fulling mill. AB a great water wheel, carried about by a ftream of water, coming from the trough C, and falling into the buckets D, D, D whofe weight carries the wheel about; this is a breaft mill, becaufe the water comes no higher than the middle or breaft of the wheel ; EF is its axis; I, I; K, K, two lifters going thro' the axle, which raife the ends G, G of the wooden mallets GH, GH, as the wheel goes about ; and when the end G flips off the cog or lifter K or I, the mallet falls into the trough L, and each of the mallets makes two ftrokes for one revolution of the wheel. The mallets move about the centers M, M. Thefe troughs L, L, contain the ftuff which is to be milled, by the beating of the mallets. N, N, is a channel to carry the water, being juft wide enough to let the wheel go round. And the wheel may be ftopt, by turning the trough C afide, which brings the water. In this engine more mallets may be ufed, and then more pins or lifters muft be put thro' the axis EF.

Sect. V. A W A T C H.
Fig. 66. is a common Pocket Watch. AA the Fig. balance, BB the verge; C, C, two palats. D the 66. crown wheel acting againft the palats $\mathrm{C}, \mathrm{C} ; \mathrm{E}$ its pinion. F the contrate wheel, G its pinion. H the third wheel, I its pinion. K the fecond wheel or center wheel, L its pinion. M the great wheel, \mathbf{N} the fufee turning round upon the fpindle of M . O the fpring box, having a fpring included in it. PP the cbain going round the fpring box O , and the fufee N. , This work is within the watch between the two plates. Here the face is downward, and in the watch the wheel K is placed in the center, and the others round about it. Here I have placed them fo as beft to be feen, which fignifies nothing to the motion. The balance AA is without the plate, covered by the cock X. The minute hand Q goes upon the axis of the wheel K .

Then between the upper plate and the face, we have V the cannon pinion or pinion of report. Z the dial wheel. T the minute wheel. S the pinion or $n u t$, fixed to it. The focket of the cannon pinion V goes into the focket of the wheel Z , and are movable about one another, and both go thro' the face; on the focket of the pinion Z is fixed the hour hand R ; and on the focket of V is fixed the minute hand Q . Likewife the focket of V is hollow, and both go upon the arbour of the wheel K , which reaches thro' the face, and are faftened there. The wheel and focket, T, S are hollow, and go upon a fixed axle on which they turn round.

When the chain PP is wound up, upon the fufee \mathbf{N}; the fpring included in the box O , draws the chain PP , which forces about the wheel M , the fufee being leept from lipping back, by a catch on purpofe. Then M drives L, and K, and K drives I, and H drives G, and F drives E, and the tecth of the crown wheel D, act againft the palats C, C alternately, and cauie the balan:e A to vibrate

Fig. vibrate back and forward, and thus the watch is kept going.
66. The cannon pinion, and dial wheel V and Z, and the hands Q, R, being put upon the arbor of K at W ; and faftened there, by means of a fhoulder which is upon the axis, and a brafs fpring; as the wheel K goes round, it carries with it the pinion V with the minute hand, and V drives T together with S; and S drives Z with the hour hand.

The numbers of the wheels and pinions, (that is the teeth in them) are, $\mathrm{M}=48, \mathrm{~L}=12, \mathrm{~K}=$ $54 x \mathrm{I}=6, \mathrm{H}=48, \mathrm{G}=6, \mathrm{~F}=48, \mathrm{E}=6$, $\mathbf{D}=15$, and 2 palats. The train, or number of beats in an hour, is 17280 , which is about $4 \frac{3}{4}$ beats in a fecond. Alfo $V=10, Z=36, S=12$, $T=40$.

The wheel M goes round 6 times in 24 hours, therefore K goes round $\left(\frac{48}{12}\right) 4$ times as much; that is, 24 times, or once in an hour, and the hand Q along with it ; therefore Q will fhew minutes. Then as V goes round once in an hour, T will go round $\left(\frac{10}{40}\right) \div \frac{1}{4}$ of that, or $\frac{2}{4}$ the circumference; and as S goes $\frac{1}{4}, \mathbf{Z}$ will go $\left(\frac{12}{36}\right) \frac{1}{3}$ of that, or $\frac{1}{12}$ of the circumference in an hour, and therefore as R goes along with it, R will fhew the hours. The wheels and pinions T, Z, and S, V, are drawn with the face upwards. And the whole machine included in a cafe is but about two inches diameter. There is a fpiral fpring fixed under the balance AB , called the regulator, which gives it a regular motion; and likewife abundance of fmall parts helpful to her motion, too long to be defribed here.

Seet. V. A W A T C. H. ini
The way of writing down the numbers, is thus, Fig.

Explanation. The wheel with 48 drives a pinion of 12 , and a wheel of 54 on the fame arbor. The wheel 54 drives the pinion 6 with the wheel 48 on the fame arbor. The wheel 48 drives the pinion 6 and wheel 48 on the fame arbor. The wheel 48 drives the pinion 6 and wheel 15 on the fame arbor. And the wheel 15 drives the two palats.

Again the wheel 54 has the pinig 10 on its arbor, and the hand Q ; and the pinion 10 drives the wheel 40 , with the pinion 12 . And the pinion 12 dirives the wheel 36 with the hand R.

As this machine is moved by a fpring, it is fubject to very great inequalities of motion, occafioned by heat and cold. For hot weather fo relaxes, foftens, and weakens the main fpring, that it lofes a great deal of its ftrength, which caufes the watch to lofe time and go too flow. On the other hand, cold frofty weather fo affects the fpring, and it is fo condenfed and hardened, that it becomes far ftronger; and by that means accelerates the motion of the watch, and makes her go fafter. The difference of motion in a watch, thus occafioned by heat and cold, will often amount to an hour, and more in 24 hours. To remedy this, there is a piect of machinery, called the Slide, placed near the regalating fpring ; which being put forward or backward, fhortens or lengthens the fpring, fo as to make her keep time truly.

Some people have been fo filly as to think, that the greater ftrength of a fpring arifes wholly

Fig. from its being made fhorter, as this happens to be one of the effects of cold. But it is eafily demon-
67. ftrated that this is not the caufe. For let $A B$ be a fpring as it is dilated by heat, and $a b$ the fame fpring contracted by cold. Now if the fpring has been contracted in length, it muft be proportionally contracted in all dimenfions. Let l, b, d, denote the length, breadth, and depth, in its cold, and leaft dimenfions; and $r l, r b, r d$, the length, breadth, and depth, in its hot and greateft dimenfions. Then (Prop. LIV.) the ftrength of the longer, to the ftrength of the fhorter, will be as $r b \times r r d d$
$r l$ to \bar{l} (confidering it weakened by the length), and that is as $r r$ to $\mathbf{1}$, or as $A B^{*}$ to $a b^{2}$. So that the longer faring, upon account of its being affected with heat, is fo far from being weaker, than the fhorter affected with cold, that it is the ftronger of the two. And therefore this difference is not to be afcribed merely to the lengthning or fhortning thereof; but muft be owing to the nature, texture and conftitution of the fteel, as it is fome way or other affected and changed by the heat and cold.

And that there is fome change induced by the cold, into the very texture of the mettal, is evident from this, that all forts of tools made of iron or fteel, as fprings, knives, faws, nails, \&c. very eafily fnap and break in cold frofty weather, which they will not do in hot weather. And that property of fteel fprings is the true caufe, that thefe forts of movements can never go true.
66. To make a calculation of the different forces requifite to make a watch gain or lofe any number of minutes, as fuppofe half an hour in 24 ; and I have often experienced it to be more. By Cor. 4. Prop. VI. the product of the force and iquare of defcribed, which here is a given quantity. For 66. the matter of the balance remains the fame in hot as cold weather; and fo does the length of the fwing, which here is the face defcribed. Therefore the force is reciprocally as the fquare of the time of vibrating, or directly as the fquare of the number of vibrations in 24 hours. Therefore the force with the warm fpring, is to the force with the cold one; as the fquare of $23 \frac{1}{2}$ hours, to the fquare of 24 ; that is, nearly as 23 to 24 . So that if a fpring was to contract half an inch in a foot in length, without altering its other dimenfions, it would but be fufficient to account for that phenomenon; but this is forty times more than the lengthening and fhortening by heat and cold, for that does not alter fo much as a thoufandth part, as is plain from experiments.
The cafe being thus, a clock or watch going by a fpring, can never be made to keep time truly, except it be always kept to the fame degree of heat or cold, which cannot be done without conftant attendance. And if any fort of mechanifin be contrived to correct this; yet as fuch a thing can only be made by guefs, it cannot be trufted to at fea, but only for fhort voyages. But no motion however regular, can ever anfwer at fea, where the irregular motion of the hip will continually difturb it; add to this, that the fmall compafs a watch is contained in, makes it eafier difturbed, than a larger machine would be; but to fuppofe that any regular motion can fubfift among ten thoufand irregular motions, and in ten thoufand different directions, is a moft glaring abfurdity And if any one with fuch a machine would but make trial of it to the Eaft Indies, he would find the abfurdity and difappeintment. And therefore I never expect to fee fuch a time keeper, or any fuch thing as a watch or clock

Fig. going by a fpring, to keep true time at fea. But 66. time will difcover all things.

As to pendulum clocks, their irregularity in the fame latitude is owing to nothing but the lengthning or fhortning of the pendulum; which is a mere trine to the other. But then they would be infinitely more difurbed at fea, than a watch; and in a ftorm could not go at all. In different latitudes too, another irregularity attends a pendulum, depending on the different forces of gravity. Tho' this amounts but to a fmall matter, yet it makes a confiderable variation, in a great length of time. For in fouth latitudes, where the gravity is lefs, a clock lofes time. And in north latitudes, where the gravity is greater, it gains time. So that none of thefe machines are fit to meafuie time at fea, altho' ten times ten thoufand pounds fhould be given away for making them.

A DESCENDING CLOCK.

68. Fig. 68. is a clock defcending down an inclined piane. This confifts of a train of watch work, contained between two circular plates $\mathrm{AB}, \mathrm{CD}_{2}$ 4 inches diameter, fixed together by a hoop an inch and haif broad, inclofing all the work. The inner wort: confifts of 5 wheels, the fane as in a watch, only there is a fpur wheel inftead of the contrate wheel, as $4 ; b$ is the balance, whofe palats play in the teeth of the crown wheel 5 . Here is no fipring to give it motion, but inftead thereof, the weight W is fexed to the wheel I , and fo adjuited for weight, that it may balance the lower fide, and hinder it from rolling down the plane. Now whillt the weight W moves the wheel I , this wheel by moving about, caufes the weight iv to defend, by which it ceafes to be a balance for the oppofite fide, and therefore that fide begins to defcend, plane PQ may be a board, which muft be elevated 10 or 12 degrees, but that is to be found by trials; for if the go too flow the end P muft be raifed; but if too faft it muft be lowered. When the clock has gone the length of the board to Q, it muft be fet again at P. The fore fide $C D$ is divided into hours, and a pin is fixed in the center at G, on which the hand FGH , always hangs loofely in a perp. pofition, with the heavy end H downward. And the end F fhews the hour of the day. So that the hours come to the hand, and not the hand to the hours.

The board $P Q$ muft be be perfectly ftreight from one end to the other, or elfe the will go fafter in fome places, and flower in others.

The circle with hours ought to be a narrow rim of brafs, movable round about, by the help of of one or more pins placed in it; fo that it may be fet to the true time.

Fig. The weight W ferves for two ufes, 1 , to be a 68. counterpoife to the fide A; and 2, by its weight to put the clock in motion.

The weight W muft be fo heavy as to make the clock keep time, when it has a proper degree of elevation as 45 degrees; and then the board muft have an elevation of 10 or 12 degrees. If fhe go too faft, with thefe pofitions, take fome thing off the weight; if too flow, add fomething to it.

SECT. VI.

Hydrostatics and Pneumatics.

DEFINITIONI.

AFluid, is fuch a body whofe parts are eafily moved among themfelves, and yield to any force acting againtt them, lut reoume 1 bstylacequipon its D E F. II. magnigfom ni ondt ,
Hydroftatics, is a fcience that demonftrates the properties of fluids.

> D E F.. III.

Hydraulics, is the art of raifing water by engines. D E F. IV.
Pneumatics, is that fcience which fhews the properties of the air.

> D E F. V.

A fountain or jet d'eau, is an artificial fpout of water.
P R O P. LXIII.

If one part of a fuid be bigber than anotber, the bigber parts will continually defcend to the lower places, and will not be at ref, till the furface of it is quite level.

For the parts of a fluid being movable every way, if any part is above the reft, it will defcend by its own gravity as low as it can get. And afterwards other parts that are now become higher,

Fig. will defcend as the other did, till at laft they will all be reduced to a level or horizontal plane.

Cor. I. Hence water that communicates by means of a channel or pipe, with other water; will Settle at the fome bight in both places.

Cor. 2. For the fame reafon, if a fluid gravitates towards a center; it will diftofe itfelf into a Spherical figure, woloose center is the center of force. As the fea in refpeit of the earth.

P R O P. LXIV.

If a fluid be at reft in a velfel whofe bafe is parallel to the borizon; equal parts of the bafe are equally preffed by the fluid.

For upon every part of the bafe there is an equal column of the fluid fupported by it: And as all thefe columns are of equal weight, they muft prefs the bafe equally; or equal parts of the bafe will fuftain an equal preffure.

Cor. 1. All parts of the fluid prefs equally at the Same depth.

For imagine a plain drawn thro' the fluid parallel to the horizon. Then the preffure will be the fame in any part of that plane, and therefore the parts of the fluid at $t^{-\infty}$ fame depth fuftain the fame preffure.

Cor. 2. The preffure of a fluid at any depth, is as the depth of the fluid.

For the preffure is as the weight, and the weight is as the hight of a column of the fluid.

PR O P. LXV.

If a fuid is compreffed by its weight or otberwife; at any point it preffes equally, in all manner of directions.

This arifes from the nature of fluidity; which is, to yield to any force in any direction. If it cannot give way to any force applied, it will prefs againft other parts of the fluid in direction of that torce. And the preffure in all directions with be the fame. For if any one was lefs, the fiuid would move that way, till the preffure be equal every wảy.

Cor. In any veffel containing a fluid; the preflure is the fame againft the bottom, as againft the fides, or even upwards, at the fame depth.

P R O P. LXVI.

The preflure of a fuid upon the bafe of the containing veljel, is as the bafe, and perpendicular altitude; whatever be the figure of the veffel that contains it.
Let ABIC, EGKH be two veffels. Then (Prop. LXIV. Cor. 2.) the preffure upon an inch on the bafe $\mathrm{AB}=$ hight $\mathrm{CD} \times \mathrm{I}$ inch. And the preffure upan an inch on the bafe HK is = hight $\mathrm{FH} \times 1$ inch. But (Prop. LXIV.) equal parts of the bafes are equally preffed, therefore the preffure on the bafe $A B$ is $C D \times$ number of inches in $A B$; and preffure on the bafe HK is $\mathrm{FH} \times$ number of inches in HK. That is, the preffure on $A B$ is to the preffure on HK ; as bafe $\mathrm{AB} \times$ hight CD , to the bafe HK \times hight FH .
Cor. 1. Hence if the bights be equal, the preffures are as the bafes. And if botb the bights and bafes be

For the reafon that the wider veffel EK, has no greater preffure at the bottom, is, becaufe the oblique fides EH, GK, take off part of the weight. And in the narrower veffel CB, the fides CA, IB, re-act againft the preffure of the water, which is all alike at the fame depth; and by this re-action the preffure is increafed at the bottom, fo as to become the fanse every where.

Cor.'2. The preffure againft the bafe of any veffel, is the fame as of a cylinder of an equal bafe and bigbt.
70. Cor. 3. If libere be a recurve tube ABF, in which are two different fuids CD, EF. Their bights in the tzoo legs CD, EF, weill be reciprocally as their Specific gracitities, weben they are at reft.

For if the fluid EF be twice or thrice as light as CD ; it mult have twice or thrice the hight, to have an equal preffure, to counterbalance the other.

P R O P, LXVII.

71. If a body of the fame fpecific gravity of a fluid; be immerfed in it, it will reft in any place of it. A body of greater denfity will fink; and one of a lefs denjity will fwim.

Let A, B, C be three bodies; whereof A is lighter bulk for bulk th.. the fluid; B is equal ; and C heavier. The body B, being of the fame denfity, or equal in weight as fo much of the fluid; it will prefs the fluid under it juft as much as if the fpace was filled with the fluid. The preffure then will be the fame all around it, as if the fluid was there, and confequently there is no force to put it out of its place. But if the body be lighter, the
the preffure of it downwards will be lefs than be- Fig. fore; and lefs than in other places at the fame 71. depth; and confequently the leffer force will give way, and it will rife to the top. And if the body be heavier, the preffure downwards will be greater than before; and the greater preffure will prevail and carry it to the bottom.

Cor, 1. Hence if several bodies of different specific gravity be immersed in a fluid; the beavieft will get the loweft.

For the heavieft are impelled with a greater force, and therefore will go fafteft down.

Cor. 2. A body immerfed in a fluid, lofes as mucb weight, as an equal quantity of the fluid weighs. And the fluid gains it.

For if the body is of the fame fpecific gravity as the fluid; then it will lofe all its weight. And if it be lighter or heavier, there remains only the difference of the weights of the body and fluid, to move the body:

Cor. 3. All bodies of equal magnitudes, lofe equal weights in the fame fluid. And bodies of different magnitudes lofe weights proportional to the magnitudes.

Cor. 4. The weights loft in different fluids, by immerging the Same body therein, are as the fpecific gravities of the fluids. And bodies of equal weight, lofe weights in the fame fluid, reciprocally as the fpecific gravities of the bodies.

Cor. 5. The weight of a body fwimming in a Aluid, is equal to the weight of as much of the fluid, as the immersed part of the body takes.up.

For the preffure underneath the fwimming body is juft the fame as fo much of the immerfed fluid; and therefore the weights are the fame.

122 H Y D R O S TATICS.
Fig. Cor. 6. Hence a body will fink deeper in a ligbter 7 1. fuid than in a beavier.

Cor. 7. Hence appears the reafon why we do not feel the zobole weight of an immerfed body, till it be drawn quite out of the water.

PROP. LXVIII.

72. If a fuid runs tbro' a pipe, fo as to leave no vacuities; the velocity of the fluid in different parts of it, will be reciprocally as the tranfuerfe fections, in thefe parts.

Let AC, LB be the fections at A and L. And let the part of the fluid ACBL come to the place $a c b l$. Then will the folid ACBL = folid $a c b l$; take away the part $a c \mathrm{BL}$ common to both; and we have $\mathrm{AC} c a=\mathrm{LB} b l$. But in equal folids the bafes and hights are reciprocally proportional. But if $\mathrm{D} f$ be the axis of the pipe, the hights $\mathrm{D} d, \mathrm{~F} f$, paffed thro' in equal times, are as the velocities. Therefore, fection AC : fection LB : : veiocity along Ff : velocity along $\mathrm{D} d$.

PR O P. LXIX.

73:
If AD is a vefel of water or any otber fluid; B a bole in the bottom or fide. Then if the veffel be always kept full; in the time a beavy body falls tbro' belf the bight of the water above the bole AB , a cylinder of water zeill flow out of the bole, wbofe bigbt is AB , and bafe the area of the bole.

The preffure of the water againft the hole B, by which the motion is generated, is equal to the weight of a column of water whofe hight is AB , and bafe the area B (by Cor. 2. Prop. LXVI.). But equal forces generate equal motions; and fince a cylinder
cylinder of water falling thro' $\frac{1}{2} \mathrm{AB}$ by its gravity, Fig. acquires fuch a motion, as to pafs thro' the whole 73. hight $A B$ in that time. Therefore in that time the water running out muft acquire the fame motion. And that the effluent water may have the fame motion, a cylinder muft run out whofe length is $A B$; and then the fpace defcribed by the water in that time will alfo be $A B$, for that fpace is the length of the cylinder run out. Therefore this is the quantity run out in that time.

Cor. 1. The quantity run out in any time is equal to a cylinder or prifm, whofe length is the Jpace defcribed in that time by the velocity acquired by falling tbro' balf the bight, and whole baje is the bole.
For the length of the cylinder is as the time of running out.

Cor. 2. The velocity a little witbout the bole, is greater than in the bole; and is nearly equal to the velocity of a body falling tbro' the whole bight AB.

For without the hole the ftream is contracted by the water's converging from all fides to the center of the hole. And this makes the velocity. greater in about the ratio of I to $\sqrt{ } 2$.

Cor. 3. The water Spouts out with the fame velocity, whether it be downwards, or fideways, or upwards. And therefore if it be upwards, it afcends nearly to the bigbt of the water above the bole.

Cor. 4. The velocities and likewife the quantities of the fpouting water, at different deptbs; will be as the fquare roots of the deptbs.

Scholium.

From hence are derived the rules for the conftruc- 74. tion of fountains or jets. Let ABC be a refervoir of water, CDE a pipe coming from it, to bring

Fig. bring water to the fountain which fouts up at E , to the hight EF, near to the level of the refervoir $A B$. ' In order to have a fountain in perfection, the pipe CD muft be wide, and covered with a thin plate at E with a hole in it, not above the fifth or fixth part of the diameter of the pipe CD. And this pipe muft be curve having no angles. If the refervoir be 50 .feet high, the diameter of the hole at E may be an inch, and the diameter of the pipe 6 inches. In general, the diameter of the hole E , ought to be as the fquare root of the hight of the refervoir. When the water runs thro' a great length of pipe, the jet will not rife fo high. A jet never rifes to the full hight of the refervoir ; in ${ }^{2} 5$ feet jet it wants an inch, and it falls fhort by lengths which are as the fquares of the hights; and fimaller jets lofe more. No jet will rife 300 feet high.
75. A fmall fountain is eafily made by taking a ftrong bottle A, and filling it half full of water; cement a tube BI very clofe in it, going near the bottom of the bottle. Then blow in at the top B, to comprefs the air within; and the water will fpout out at B. If a fountain be placed in the funfhine and made to play, it will fhew all the colours of the rainbow, if a black cloth be placed beyond it.

A jet goes higher if it is not exactly perpendicular; for then the upper part of the jet falls to one fide without refifting the column below. The refiftance of the air will alfo deftroy a deal of its motion, and hinder it from rifing to the hight of the refervoir. Alfo the friction of the tube or pipe of conduct has a great fhare in retarding the motion. 78. If there be an upright veffel as AF full of water, and feveral holes be made in the fide as B, C, D: then the diftances, the water will fpout, upon the horizontal plane EL, will be as the fquare roots of the rectangles of the fegments, ABE, ACE, and ADE. For the fpaces will be as the velocities

Sect. VI. HYDROSTATICS. velocities and times. But (Cor. 4.) the velocity of Fig. the water flowing out of B , will be as $\sqrt{\mathrm{AB}}$, and 78 . the time of its moving (which is the fame as the time of its fall) will be (by Prop. XIII.) as $\sqrt{\overline{\mathrm{BE}}}$; therefore the diftance EH is as $\sqrt{\mathrm{AB} \times \overline{\mathrm{BE}} \text {; }}$ and the fpace EL as $\sqrt{\overline{A C E}}$. And hence if two holes are made equidiftant from top and bottom, they will project the water to the fame diftance, for if $\mathrm{AB}=\mathrm{DE}$, then $\mathrm{ABE}=\mathrm{ADE}$, which makes EH the fame for both, and hence alfo it follows, that the projection from the middle point C will be furtheft; for ACE is the greateft rectangle. Thefe are the proportions of the diftances; but for the abfolute diftances, it will be thus. The velocity thro' any hole B , will carry it thro' 2 AB in the time of falling thro' AB ; then to find how far it will move in the time of falling thro' BE. Since thefe times are as the fquare roots of the hights, it will be, $\sqrt{\mathrm{AB}}: 2 \mathrm{AB}:: \sqrt{ } \mathrm{BE}: \mathrm{EH}=$ ${ }_{2} \mathrm{AB} \sqrt{ } \frac{\mathrm{BE}}{\mathrm{AB}}=2 \sqrt{\mathrm{ABE}}$; and fo the fpace $\mathrm{EL}=$ $2 \sqrt{\mathrm{ACE}}$. It is plain, thefe curves are parabolas. For the horizontal motion being uniform; EH will be as the time ; that is, as $\sqrt{\mathrm{BE}}$, or BE will be as EH^{2}, which is the property of a parabola.

If there be a broad veffel ABDC full of water, and the top $A B$ fits exactly into it; and if the fmall pipe FE of a great length be foldered clofe into the top, and if water be poured into the top of the pipe F, till it be full; it will raife a great weight laid upon the top, with the little quantity of water contained in the pipe; which weight will be nearly equal to a column of the fluid, whofe bafe is the top AB ; and hight, that of the pipe EF. For the preffure of the water againft the top $A B$, is equal to the weight of that column of wa-

Fig. ter, by Prop. LXV. and Cor. And Prop. LXVI. 76. Cor. 2.

But here the tube muft not be too fmall. For in capillary tubes the attraction of the glafs will take off its gravity. If a very fmall tube be immerfed with one end in a vefiel of water, the water will rife in the tube above the furface of the water; and the higher, the fmaller the tube is. But in quickfilver, it defcends in the tube below the external furface, from the repulfion of the glafs.
77. To explain the operation of a fyphon, which is a crooked pipe CDE, to draw liquors off. Set the fyphon with the ends C, E, upwards, and fill it with water at the end E till it run out at C ; to prevent it, clap the finger at C , and fill the other end to the top, and ftop that with the finger. Then keeping both ends fopt, invert the fhorter end C into a veffel of water $A B$, and take off the fingers, and the water will run out at E , till it be as low as C in the veffel; provided the end E be always lower than C . Since E is always below C , the hight of the column of water DE is greater than that of CD, and therefore DE muft out weigh CD and defcend, and CD will follow after, beirg forced up by the preffure of the air, which acts upon the furface of the water in the venel $A B$.

The furface of the earth falls below the homzontal level only an inch in 620 yards; and in other diftances the defcents are as the fquares of the ciftances.
79. And to find the nature of the curve DCG, forming the jet IDG. Let AK be the hight or top of the refervoir HF, and fuppofe the ftream to afcend without any friction, or reifftance. By the laws of falling bodies the velocity in any place B, will be as $\sqrt{ } \mathrm{AB}$. Put the femidiameter of the hole at $\mathrm{D}=d$, and $\mathrm{AD}=b$. Then fince the fame water paffes thro' the fections at D and B ; therefore (Prop. LXVIII.) the velocity will be reciprocally
therefore $\frac{\sqrt{ } b}{\mathrm{BC}^{2}}=\frac{\sqrt{ } \mathrm{AB}}{d d}$, and $d d \sqrt{ } b=\mathrm{BC}^{2} \sqrt{ } \mathrm{AB}$, whence $\mathrm{AB} \times \mathrm{BC}_{4}=b d^{4}$; which is a paraboliform figure whofe affymptote is AK, for the nature of the cataractic curve DCG. And if the fluid was to defcend thro' a hole, as IC; it would form itfelf into the fame figure GCD in defcending.
P R O P. LXX.

Thbe reffance any body meets with in moving tbro' a fluid is as the Square of the velocity.

For if any body moves with twice the velocity of another body equal to it, it will ftrike againt twice as much of the fluid, and with twice the velocity ; and therefore has four times the refiftance; for that will be as the matter and velocity. And if it moves with thrice the velocity, it ftrikes againft thrice as much of the fluid in the fame time, with thrice the velocity, and therefore has nine times the refiftance. And fo on for all other velocities.
Cor. If a fream of water wbofe diameter is given, Arike againft an obftacle at reft; the force againft it will be as the Square of the velocity of the fiream.

For the reation is the fame; fince with twice or thrice the velocity; twice or thrice as much of the fluid impinges upon it, in the fame time.

> P R O P. LXXI.

The force of a fream of water againft any plane sbjlacle at reft, is equal to the weigbt of a column of water, whole bofe is the fection of the fream; and bigbt, the Space defiended thro' by a falling body, to acquire thai velocity.

For let there be a refervoir whofe hight is that fpace fallen thro'. Then the water (by Cor. 2. Prop.

Fig. Prop. LXIX.) flowing out at the bottom of the refervatory, has the fame motion as the fream; but this is generated by the weight of that column of water, which is the force producing it. And that fame motion is deftroyed by the obftacle, therefore the force againft it is the very fame : for there is required as much force to deftroy as to generate any motion.

Cor. The force of a Aream of water flowing out at a bole in the bottom of a refervatory, is equal to the weigbt of a column of the fluid of the fame bight and whofe bafe is the bole.

P R O P. LXXII. Prob.

To find the Specific gravity of folids or fuids.

I. For a folid beavier than water.

Weigh the body feparately, firt out of water, and then fufpended in water. And divide the weight out of water by the difference of the weights, gives the fpecific gravity; reckoning the feecific gravity of water I.

For the difference of the weights is equal to the weight of as much water (by Cor. 2. Prop. LXVII.); and the weights of equal magnitudes, are as the fpecific gravities; therefore the difference of thefe weights; is to the weight of the body; as the fpecific gravity of water 1 , to the fecific gravity of the body.

2. For a body ligbter than water.

Take a piece of any heavy body, fo big as being tied to the light body, it may fink it in water. Weigh the heavy body in and out of water, and find the lofs of weight. Alfo weigh the compound both in and out of water, and find alfo the lofs of weight.
weight. Then divide the weight of the light bo- Fig. by (out of water), by the difference of thefe loffes, gives the fpecific gravity; the fpecific gravity of water being I .

For the laft lofs is $=$ weight of water equal in magnitude to the compound.
And the firft lofs is = weight of water equal in magnitude to the heavy body.
Whence the dif. loffes is = weight of water equal in magnitude to the light body.
and the weights of equal magnitudes, being as the fpecific gravities; therefore the difference of the loffes, (or the weight of water equal to the light body) : weight of the light body : : fpecific gravity of water 1 : fpecific gravity of the light body.

> 3. For a fluid of any fort.

Take a piece of a body whofe fpecific gravity you know; weigh it both in and out of the fluid; take the difference of the weights, and multiply it by the fpecific gravity of the folid body, and divide the product by the weight of the body (out of water), for the fpecific gravity of the fluid.

For the difference of the weights in and out of water, is the weight of fo much of the fluid as equals the magnitude of the body. And the weight of equal magnitudes being as the fpecific gravities; therefore, weight of the folid : difference of the weights (or the weight of f_{g} much of the fluid): : fpecific gravity of the folid: to the fecific gravity of the fluid.

> Example.

I weighed a piece of lead ore, which was 124 grains; and in water it weighed 104 grains, the $\mathrm{K} \quad$ difference
HYDROSTATICS.

Fig. difference is 20 ; then $\frac{124}{20}=6.2$; the fpecific gravity of the ore.

A tabie of Specific gravities.

Sect. VI. HYDROSTATICS. 13t

$$
\mathrm{K}_{2}
$$

Cor.

Fig. Cor. 1. As the weight loft in a fluid, is to the abSolute reeight of the body; fo is the specific gravity of the fluid, to the Specific gravity of the body.

Cor. 2. Haring the Specific gravity of a body, and the weis bt of it; the folidity may be found tbus; multiply the weight in pounds by $62 \frac{1}{2}$. They fay as that product to 1 ; So is the weight of the body in pounds, to the content in feet. And having the conzent, given, one may find the weight, by working backrzards.

For a cubic foot of water weighs $62 \frac{1}{2} \mathrm{lb}$. averdupoife; and therefore a cubic foot of the body weighs $62 \frac{1}{2} \times$ by the fpecific gravity of the body. Whence the weight of the body, divided by that product, gives the number of feet in it. Or as i_{t} to that product ; fo is the content, to the weight.

Scholium.

The fpecific gravities of bodies may be found with a pair of fcales; fufpending the body in water, by a horfe hair. But there is an inftrument for this purpofe called the Hydrofatical Balance, the conftruction of which is thus. AB is the ftand and pedeftal, having at the top two cheeks of fteel, on which the beam CD is fufpended, which is like the beam of a pair of fcales, and muft play freely, and be it felf exactly in equilibrio. To this belongs the glafs babble G, and the glafs bucket H , and four other parts E, F, I, L. To thefe are loops faftened to hang them by. And the weights of all theie are fo adjufted, that $\mathrm{E}=$ $\mathrm{F}+$ the bubble in water, or $=\mathrm{I}+$ the bucket out of water, or $=\mathrm{I}+\mathrm{L}+$ the bucket in water. Whence $L=$ difference of the weights of the bucket in and out of water. And if you pleafe you may have a weight K, fo that $K+$ bubble in water $=$ bubble out of water; or elic find it in

> grains.

Sect. VI. HYDROSTATICS.
grains. The piece L has a flit in it to flip it upon Fig. the fhank of I .
It is plain the weight $\mathrm{K}=$ weight of water as big as the bubble, or a water bubble.

Then to find the Specific gravity of a folid.
Hang E at one end of the balance, and I andthe bucket with the folid in it, at the other end; and find what weight is a balance to it.

Then flip L upon I, and immerge the bucket and folid in the water, and find again what weight balances it. Then the firf weight divided by the difference of the weights, is the fpecific gravity of the body; that of water being 1 .

For fuids.

Hang E at one end, and F with the bubble at the other ; plunge the bubble into the fluid in the veffel MN. Then find the weight P which makes a balance. Then the fpecific gravity of the fluid is $=\frac{\mathrm{K}+\mathrm{P}}{\mathrm{K}}$, when P is laid on F ; or $=\frac{\mathrm{K}-\mathrm{P}}{\mathrm{K}}$, when P is laid on E.

For E being equal to $\mathrm{I}+$ the bucket; the firft weight found for a balance, is the weight of the folid. Again, E being equal to $I+L+$ the bucket in water; the weight to balance that, is the weight of the folid in water; and the difference, is $=$ to the weight of as much water. Therefore (Cor. 1.) the firft weight divided by that difference, is the fpecific gravity of the body.

Again, fince E is $=$ to $\mathrm{F}+$ the bubble in water; therefore P is the difference of the weights, of the fluid and fo much water; that is, $\mathrm{P}=$ difference of K and a fluid bubble; or $P=$ fluid $-K$, when the fluid is heavier than water, or when P is laid on F. And therefore $P=K$ - the fluid K_{3} bubble,

134

PNEUMATICS.
Fig. bubble, when contrary. Whence the fluid bubble 80. $=\mathrm{K} \pm \mathrm{P}$, for a heavier or lighter fluid. And the fpecific gravities being as the weights of thefe equal bubbles; fpecific gravity of water: fpecific gravity of the fluid : : K:K $: \mathrm{P}:: \mathrm{I}: \frac{\mathrm{K} \pm \mathrm{P}}{\mathrm{K}}$ the fpecific gravity of the fluid. Where if P be O, it is the fame as that of water.

PROP. LXXIII.

The air is a beavy body, and gravitates on all parts of the furface of the earth.

That the air is a fluid is very plain, as it yields to any the leaft force that is impreffed upon it, without making any fenfible refiftance. But if it be moved brinkly, by fome very thin and light body, as a fan, or by a pair of bellows, we become very fenfible of its motion againft our hands or face, and likewife by its impelling or blowing away any light bodies, that lie in the way of its motion. Therefore the air being capable of moving other bodies by its impuife, muft it felf be a body; and mult therefore be heavy like all other bodies, in proportion to the matter it contains; and will confequently prefs upon all bodies placed under it. And being a fluid, it will dilate and fpread itfelf all over upon the earth: and like other fluids will cedritate upon, and prefs every where upon its furtace. The gravity and preflure of the air is alfo evident from experiments. For (fig. 70.) if water, $\& c$. be put into the tube ABF , and the air be drawn out of the end F by an air-pump, the water will afcend in the end F, and defcend in the end A , by reafon of the preffure at A , which was taken off or diminifhed at F. There are numberlefs experiments of th's fort. And tho' thefe properties
 fo very fine and fubtle, as to be perfectly tranfpa-70. rent, and quite invifible to the eye.

Cor. 1. The air, like other fluids, will, by its weight and fluidity, infinuate itfelf into all the cavities, and corners witbin the earth; and there prefs with fo much greater force, as the places are deeper.

Cor. 2. Hence the atmofphere, or the whole body of aiv furrounding the earth, gravitates upon the furfaces of all otber bodies, whetber folid or fluid, and that with a force proportional to its weight or quantity of matter.

For this property it mult have in common with all other fluids.

Cor. 3. Hence the preffure, at any depth of water, or other fluid, will be equal to the preflure of the fluid together with the preflure of the atmofphere.

Cor. 4. Likewife all bodies, near the furface of the earth, lofe fo much of their weight, as the fame bulk of fo much air weight. And confequently, they are fomething lighter than they would be in a vacuum. But being fo very fmall it is commonly neglected; tho' in ftrictnefs, the true or abfolute weight is the weight in vacuo.

PROP. LXXIV.

The air is an elaftic fluid, or fuch a one, as is capable of being condenfed or expanded. And it obferves this law, that its denfity is proportional to the force that compreffes it.

Thefe properties of the air, are proved by experiments, of which there are innumerable. If you take a fyringe, and thruft the handle inwards, you'll feel the included air act ftrongly againft your K 4

Fig. hand; and the more you thruft, the further the pifton goes in, the more it refifts; and taking away your hand, the handle returns back to where it was at frff. This proves its elafticity, and aifo that air may be driven into a lefs fpace, and condenied.
75. Again, take a ftrong bottle, and fill it half full of water, and cement a pipe BI, clofe in it, going near the bottom; then inject air into the bottle thro' the pipe BI. Then the water will fpout out at B , and form a jet; which proves, that the air is firft condenfed, and then by its fpring drives out the water, thl it become of the fame denfity as at firf, and then the fpouting ceafes.
81. Likewife if a veffel of glafs $A B$ be filled with water in the veffel CD, and then drawn up with the bottom upwards; if any air is left in the top at A, the higher you pull it up, the more it expands; and the further the glafs is thruft down into the veffiel CD, the more the air is condenfed.

Again, take a crooked glafs tube ARD open at the end A, and clofe at D; pour in mercury to the hight BC, but no higher, and then the air in DC is in the fame ftate as the external air. Then pour in more mercury at A, and obferve where it rifes to in both legs, as to G and H. Then you may always fee that the higher the mercury is in the leg BH, the lefs the fpace GD is, into which the air is driven. And if the hight of the mercury FH be fuch as to equal the preffure of the atmofphere, then DG will be half DC; if it be twice the preffure of the atmofphere, $D G$ will be $\frac{1}{3} \mathrm{DC}, 8 x$. So that the denfity is always as the weight or compreffion. And here the part CD is fuppofed to be cylindrical.

Cor. 1. The fpace that any quantity of air takes up, is reciprocally as the force that compreffes it.

Cor. 2. All the air near the earth is in a Jate of Fig. compreffion, by the weight of the incumbent atmofphere.

Cor. 3. The air is denfer near the earth, or at the foot of a mountain, than at the top of it, and in bigh places. And the bigher from the earth the more rare it is.

Cor. 4. The fpring or elafticity of the air is equal to the weight of the atmofphere above it; and produces the fame effects.

For they always balance and fuftain each other.
Cor. 5. Hence if the denfity of the air be increafed; its fpring or elaficity will likewife be increafed in the fame proportion.

Cor. 6. From the gravity and preffure of the atmofphere, upon the furfaces of fluids, the fluids are made to rife in any pipes or veffels, when the preffure witbin is taken off.

P R O P. LXXV.

The expanfion and elafticity of the air is increafed by beat, and decreafed by cold. Or beat expands, and cold condenfes the air.

This is alfo matter of experience; for tie a bladder very clofe with fome air in it, and lay it before the fire, and it will vifibly diftend the bladder ; and burft it if the heat is continued, and encreafed high enough.

If a glafs veffel AB (Fig. 81.) with water in it, 8 be turned upfide down, with a little air in the top A; and be placed in a veffel of water, and hung over the fire, and any weight laid upon it to keep it down; as the water warms, the air in the top A, will by degrees expand, till ic fills the glafs, and

Fig. by its elaftic force, drive all the water out of the 81. glafs, and a good part of the air will follow, by continuing the veffel there. Many more experiments may be produced proving the fame thing.

PROP. LXXVI.

The air wiill prefs upon the furfaces of all fuids, with any force; witbout paling tbro' them, or entering into them.

If this was not fo, no machine, whofe ufe or action depends upon the preffure of the atmofphere, could do its bufinefs. Thus the weight of the atmofphere preffes upon the furface of water, and forces it up into the barrel of a pump, without any air getting in, which would fpoil its working. Likewife the preffure of the atmofphere keeps mercury fufpended at fuch a hight, that its weight is equal to that preffure; and yet it never forces itfelf thro' the mercury into the vacuum above, though it ftand never fo long. And whatever be the texture or conftitution of that fubtle invifible fluid we call air, yet it is never found to pafs through any fluid, tho' it be made to prefs never fo ftrongly upon it. For tho' there be fome air inclofed in the pores of almoft all bodies, whether folid or fluid; yet the particles of air cannot by any force be made to pafs thro' the body of any fluid; or.forced through the pores of it, although that force or preffure be continued never fo long. And this feems to arguethat the particles of air are greater than the particles or pores of other fluids; or at leaft are of a fructure quite different from any of them.

PROP.

PROP. LXXVII.

T'be weight or preffure of the atmofphere, upon any bafe at the earth's furface; is equal to the weight of a column of mercury of the fame bafe, and wbofe bight is from 28 to 3 I inches, Seldom more or lefs.

This is evident from the barometer, an inftrument which fhews the preffure of the air; which at fome feafons ftands at a hight of 28 inches, fometimes at 29 , and 30 , or 31 . The reafon of this is not, becaufe there is at fome times more air in the atmofphere, than at others; but becaufe the air being an extremely fubtle and elaftic fluid, capable of being moved by any impreffions, and many miles high ; it is much difturbed by winds, and by heat and cold; and being often in a tumultuous agitation; it happens to be accumulated in fome places, and conitquently depreffed in others; by which means it becomes denfer and heavier where it is higher, fo as to raife the column of mercury to 30 or 3 inches. And where it is lower, it is rarer and lighter, fo as only to raife it to 28 or 29 inches. And experience fhews, that it feldom goes without the limits of 28 and 3 r .

Cor. I. The air in the Same place does not always continue of the fame weight, but is fometimes beavier, and fometimes ligbter; but the mean weight of the atmosphere, is that when the quickfilver ftands at about $29 \frac{1}{2}$ inches.

Cor. 2. Hence the preflure of the atmofpbere upons a Square inch at the earth's furface, at a medium, is very near 15 pounds, averdupoife.

For an inch of quickfilver weighs 8.102 ounces:
Cor. 3. Hence alfo the weight or preflure of the atmosphere, in its ligbteft and beavieft ftate, is equal to

Fig. the weicight of a column of water, 32 or 36 feet bigh; or at a me $4 m 34$ feet.

For water and quickfilver are in weight nearly as 1 to 14 .

Cor. 4. If the air was of the fame denfity to the top of the atmofphere, as it is at the earth; its bight soould be about $5 \frac{1}{3}$ miles at a medium.

For the weight of air and water are nearly as 12 to 1000.

Cor. 5. The denfity of the air in two places diftant from each otber but a ferw miles, on the earth's furface and in the Same level; may be looked on to be the fame, at the fame time.

Cor. 6. Thbe denfity of the air at two different altitudes in the fame place, differing only by a ferw feet; may be looked on as the fame.

Cor. 7. If the perpendicular bight of the top of a syphon from the water, be more than 34 feet, at a mean denfity of the air. The fypbon cannot be made to run.

For the weight of the water in the legs will be greater than the preffure of the atmofphere, and both columns will run down, till they be 34 feet high.

Cor. 8. Hence alfo the quickfilver rifes bigber in the barometer, at the bottom of a mountain than at the top. And at the bottom of a coal pit, than at the top of $i t$.

Hence the denfity of the air may be found at any hight from the earth, as in the following table.

Miles	denfity	Miles	denfity
	$\frac{1}{4}$.9564	10
$\frac{1}{2}$.17146	20	.02917
$\frac{3}{4}$.8748	30	.005048
1	.8372	40	.000881
2	.7012	50	.000155
3	.5871	100	.0000000298
4	.4917		
5	.4119		

The firf and third columns are the hight in miles from the furface of the earth. And the fecond and fourth columns, fhew the denfity at that hight; fuppofing the denfity at the furface of the earth, to be I .

The denfity at any hight is eafily calculated by this feries. Put $r=$ radius of the earth, $b=$ hight from the furface, both in feet. Then the denfity at the hight h, is the number belonging to the logarithm, denoted by this feries $-\frac{b}{68444}-$ $\frac{b}{r} \mathrm{~A}-\frac{b}{r} \mathrm{~B}-\frac{b}{r} \mathrm{C} \& \mathrm{c}$. where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. are the preceding terms. The terms here will be alternately negative and affirmative. But the firft term alone is fufficient when the hight is but a few miles.

By the weight and preffure of the atmofphere, the operations of pneumatic engines may be accounted for and explained. I fhall juft mention one or two.

$$
A \quad P U M P
$$

Fig. 83. is a common pump. AB the barrel or 83 . tody of the pump, being a hollow cylinder, made

Fig. of wood or lead. CD the handle movable about 83. the pin E. DF an iron rod moving about a pin D; this rod is hooked to the bucket or fucker FG, which moves up and down within the pump. The bucket FG is hollow, and has a valve or clack L at the top opening upwards. H a plug -fixed at the bottom of the barrel, being likewife hollow, and a valve at I opening alfo upwards. BK the bottom going into the well at K; the pipe below B need not be large, being only to convey the water out of the well into the body of the pump. The plug H muft be fixed clofe that no water can get between it and the barrel; and the fucker FG, is to be armed with leather, to fit clofe that no air or water can get thro' between it and the barrel.

When the pump is firft wrought, or any time in dry weather when the water above the fucker is wafted, it muft be primed, by pouring in fome water at the top A to cover the fucker, that no air get through. Then raifing the end C of the handle, the bucket F defcends, and the water will rife thro' the hollow GL, preffing open the valve L. Then putting down the end C raifes the bucket F, and the valve L fhuts by the weight of the water above it. And at the fame time the preffure of the atmofphere forces the water up thro' the pipe KB, and opening the valve I, it paffes thro' the plug into the body of the pump. And when the fucker G defcends again, the valve I fhuts, and the water cannot returr, but opening the valve L, paffes thro the fucker GL. And when the fucker is raifed again, the valve L fhuts again, and the water is raifed in the pump. So that by the motion of the pifton up and down, and the alternate opening and fhutting of the two valves; water is continually raifed into the body of the pump, and difcharged at the fout M .

Sect. VI. P NEUMATICS.

The diftance KG, from the well to the bucker, Fio mult not be above 32 feet; for the preflure of the $8 \mathbf{8 .}$ atmofphere will raife the water no higher, and if it is more, the pump will not work. It is evident a pump will work better when the atmofphere is heavy than when it is light, there being a twelfth or fifteenth part difference, at different times. And when it is lighteft it is only equal to 32 feet. Wherefore the plug H muft always be placed fo low, as that the fucker GL may be within that compals.

A BAROMETER.

Fig. 84. is a Barometer, or an inftrument to mea- 84 fure the weight of the air. It confifts of a glafs cone $A B C$ hollow within, filled full of mercury, and hermetically fealed at the end C , fo that no air be left in it. When it is fet upright, the mercury defcends down the tube BC , into the bubble A , which has a little opening at the top A, that the air may have free ingrefs and egrefs. At the top of the tibe C , there mult be a perfect vacuum. This is fixed in a frame, and hung perpendicular againft a wall. Near the top C, on the frame, is placed a fcale of inches, fhewing how high the mercury is in the tube BC , above the level of it in the bubble A, which is generally from 28 to 3 I inches, but moftly about 29 or 30 . Along with the fcale of inches, there is alfo placed a fcale of fuch weather as has been obferved to anfwer the feveral hights of the quickfilver. Such a fcale you have annexed to the 84 th figure. In dividing the fcale of inches, care muft be taken to make proper allowance for the rifing or falling of the quickfilver in the bubble A, which ought to be about half full, when it ftands at $29 \frac{1}{2}$, which is the mean hight. For whilft the quickfilver rifes an inch at C , it defcends a little in the bubble A, and that defcent

144 P N E U MATICS.
Fig. defcent mult be deducted, which makes the divi-
84. fions be fomething lefs than an inch. Thefe inches muft be divided into tenth parts, for the more exact meafuring the weight of the atmofphere. For the pillar of mercury in the tube is always equal to the weight of a pillar of the atmofphere of the fame thicknefs. And as the hight of the quickfilver increafes or decreafes, the weight of the air increafes or decreafes accordingly. The tube muft be near 3 feet long, and the bore not lefs than $\frac{1}{5}$ or $\frac{1}{6}$ of an inch, in diameter, or elfe the quickfilver will not move freely in it.

By help of the barometer, the hight of mountains may be meafured by the following table. In which the firft column is the hight of the mountain, $\& c$. in feet or miles; the fecond the hight of the quickfilver; and the third the defcent of the quickfilver in the barometer; and this at a mean denfity of the air.

Sect. VI. P N E U M A T I C S.
Fig.

Feet	High Barom.	Defcent	Feet	High Baror	Defcent.
100	29.500	100	2600	27.028	2.472
20		. 199	2700	26.938	2.56 .2
30	29.203	. 297	2800	26.848	2.652
400	29.105	. 395	2900	26.758.	2.742
500	29.007	. 493	3000	26.668	2.832
600	28.910	5	31	26.5	2.922
70	28.812	. 688	3200	26.489	3.011
800	28.716	.784	3300	26.400	3.100
900	28.619	. 881	3400	26.311	3.189
10	28.523	. 977	3500	26.222	3.278
11	28.428	1.072	3600	26.136	$3 \cdot 364$
12	28.332	1.168	3700	26.049	$3 \cdot 45 \mathrm{I}$
1300	28.237	1.263	3800	25.961	3.539
1400	28.143	1.357	3900	25.874	3.626
1500	28.048	1.452	4000	25.7	3.714
1600	27.954	1.546	4100	25.699	3.801
17	27.860	1.640	4200	25.613	3.887
18	27.766	1.734	4300	25.527	3.973
1900	27.672	1.8	4400	25.441	4.059
2000	27.579	1. 921	4500	25.355	4.145
2100	27.487	2.013	4600	25.270	4.230
220	27.394	2.106	4700	25.185	4.315
2300	27.302	2.198	4800	25.101	4.399
2400	27.210	2.290	4900	25.017	4.483
2500	27.119	2.381	5000	24.933	14.567

I
quc

The Table continued in Miles.

Mile	H. Barom.	Defcent	Miles	H. Barom.	Defcent
0.					
0.25	28.21	1.29	3.25	16.57	93
0.50	26.98	2.52	3.50	15.85	13.65
0.75	25.80	3.70	3.75	15.16	14
1.	24.70	4.80	4.	14.50	15.00
1.25	23.62	5.88	4.25	13.87	15.63
1.50	22.60	6.90	4.50	13.27	16.23
1.75	21.62	7.88	4.75	12.70	6.80
2.	20.68	8.82	5.	12.15	17.35
2.25	19.78	9.72	$5 \cdot 25$	62	. 88
2.50	18.93	10.57	5.50	1.1	18.38
2.75	18.11	I 1.39	5.75	10.64	18.86
3.	17.32	12.18	6.	10.18	19.3

This table is made from a table of the air's denfity, made as in Schol. Prop. LXXVII. And then multiplying all the numbers thereof by 29.5 the mean denfity of the air. For the denfity of the air at any height above the earth is as the weight of the atmofphere above it, (by Prop. LXXIV.); and that is as the height of the mercury in the barometer.

A WATER BAROMETER.

85. A barometer may alfo be made of water as in fig. 85 , which is a water barometer. $A B$ is a glafs tube open at both ends, and cemented clofe in the mouth of the bottle EF, and reaching very near the bottom. Then warming the bottle at the fire, part of the air will fly out; then the end A is put into a veffel of water mixed with cochineal, which will go thro' the pipe into the bottle as it grows cold. Then it is fet upright; and the water may
may be made to ftand at any point C, by fucking Fig. or blowing at A. And if this barometer be kept 85 . to the fame degree of heat, by putting it in a veffel of fand, it will be very correct for taking fmall altitudes; for a little alteration in the weight of the atmofphere, will make the water at C rife or fall in the tube very fenfibly. But if it be fuffered to grow warmer, the water will rife too high in the tube, and fpoil the ufe of it; fo that it muft be kept to the fame temper.

If a barometer was to be made of water put into an exhaufted tube, after the manner of quickfilver; it would require a tube 36 feet long or more; which could hardly find room within doors. But then it would go 14 times more exact than quickfilver; becaufe for every inch the quickfilver rifes, the water would rife 14; from whence every minute change in the atmofphere would be difcernable.

And the water barometer above defcribed will fhew the variation of the air's gravity as minutely as the other, if the bottle be large to hold a great quantity of air. And in any cafe, by reducing the bottle (fo far as the air is contained) to a cylinder; and put $\mathrm{D}=$ diameter of the bottle, $d=$ diameter of the pipe, $p=$ height of air, $x=$ rifing in the pipe, all in inches. Then the height of a hill in feet will be nearly $\overline{1+\frac{408 d d}{p D D}} \times 7 \mathrm{r} x$. And if $y=$ height of the hill or any afcent, $\mathrm{Q}=$ $\frac{408 d d}{p \mathrm{DD}} . \quad$ Then $x=\frac{y}{\overline{1+\mathrm{Q}} \times 7^{\mathrm{I}}}$ very near, at a mean denfity of the air.

A THERMOMETER.

Fig. 86. is a thermometer, or an inftrument to 86 meafure the degrees of heat and cold. AB is a hollow

$148 \quad \mathrm{P} N \mathrm{E}$ U M A T I C S.

Fig. hollow tube near two foot long, with a ball at the 86. bottom ; it is filled with fpirits of wine mixed with cochineal, half way up the neck; which done, it is heated very much, till the liquor fill the tube, and then it is fealed hermetically at the end A. Then the fpirit contracts within the tube as it cools. It is inclofed in a frame, which is graduated into degrees, for heat and cold. For hot weather dilates the fpirit, and makes it run further up the tube; and cold weather on the contrary, contracts it, and makes it fink lower in the tube. And the particular divifions, fhew the feveral degrees of heat and cold; againft the principal of which, the words heat, cold, temperate, \&c. are written.

They that would fee more machines defcribed, may confult my large book of Mechanics, where he will meet with great variety.

FIN I S.

ERRATUM.
Page 35, Line 10 from the bottom, read, Cor. 1. Hence

THE
 PROJECTION
 OFTHE
 S P H E R E,

Orthographic, Stereographic, and Gnomonical.

Both demonftrating the

PRINCIPLES,

And explaining the

P R A C T I C E

Of thefe three feveral Sorts of Projection.

The SECOND EDITION, Corrested and Improved.

In Minimis Ufus——

$$
\mathrm{L} \quad \mathrm{O} \quad \mathrm{~N} \quad \mathrm{D} \quad \mathrm{O} \quad \mathrm{~N},
$$

Printed for J. Nourse, in the Strand, Bookfeller in Ordinary to His Majestyo M DCC LXIX.

THE

P R E F A C

\boldsymbol{T}H E Projection of the Sphere, or of its Circles, bas the Same relation to Spherical Trigonometry, that praitical Geomietry bas to plane Trigonometry. For as the one faves a deal of Calculation, by drarwing a few right Lines, fo does the otber by drawing a few Circles. The Projection of the Sphere gives a Learner a good Idea of the Spbere and all its Circles, and of their feveral Pofitions to one anotber, and consequently of Spherical Triangles, and the Nature of Spherical Trigonometry.

I bave bere delivered the Principles of tbree Sorts of Projection, in a fmall compals; and yet the Reader. will find bere, all that is eflential to the fubject; and yet notbing Juperfluous; for I tbink no more need befaid, or indeed can be faid about it, to make it intelligible and practicable. For bere is laid down, not only the wibole Theory, but the Praftice likervife. Xet the practical Part is entirely difengaged from the Theory; So that any body (tbo' be bas no defire or leifure to attain to the Theory,) may nevertbelefs, by belp of the Problems, make bimfelf Mafter of the Prailice. For which end I bave endeavoured to make all the rules relating to prallice, plain, 乃ort, and cafy, and at the same time full and clear.

It is true the folution of Problems this way, muft be allowed to be imperfect; for there will always be fome errors in working, as well as in the infruments
iv The PREFACE.
we work with. But nobody in feeking an accurate for lution to a Problem, will truft to a Projection by fcale and compafs; becaufe this cannot be depended on in cafes of great nicety. Yet where no great exaEnefs is required it will be found very ready and ufful; and, befides, will ferve to prove and confirm the Solution obtaind by Calculation.

But then this defect is abundantly recompenfed by the cafiness of this method. For by fcale and compars only, all Sorts of Problems belonging to the Sphere, as in AFtronomy, Geograpky, Dialling, Ecc. may be folved with very little trouble, wbich require a great deal of time and pains, to work out trigonometrically by the tables. It likewife affords a great pleafure to the mind, that one can, in a little time, defcribe the whole furniture of Heaven, and Earth, and reprefent them to the eye, in a fmail fcheme of paper.

But its principal ufe is for fucb perfons (and that is by far the greater number) as baving no opportunity for learning Spberical Trigonometry, bave yet a defire to refolve fome Problems of the Sphere. For fuch as thefe, tbis fmall Treatife will be of particular Service, becaufe the praztical rules, efpecially of any one fort of Projection, may be learned in a very little time, and are eafly remembered. So that I bave fome bopes I Ball pleafe all my Readers, whether tbeoretical or practical.

W. E.

l

THE

PROJECTION

OF THE

SPHERE IN PLANO.

DEFINITIONS:

1. DROFECTION of the fphere is the reprefenting its furface upon a plane, called the Plane of Projection.
2. Ortbograpbic Projection, is the drawing the circles of the fphere upon the plane of fome great circle, by lines perpendicular to that plane, let fall from all the points of the circles to be projected.
3. The Stereograpbic Projection, is the drawing the circles of the fphere upon the plane of one of its great circles, by lines drawn from the pole of that great circle to all the points of the circles to be projected.
4. The Gnomonical Projection, is the drawing the circles of an hemifphere, upon a plane touching it in the vertex, by lines or rays iffuing from the center of the hemifphere, to all the points of the circles to be projected.
5. The Primitive circle is that on whofe plane the fphere is projected. Ard the pole of this circle is called the Pole of Projection. The point from whence the projecting right lines iffue is the projeiting Point.
6. The

THE PROJECTION, \&c.

6. The Line of Meafures of any circle is the common interfection of the plane of projection, and another plane that paffes thro' the eye, and is perpendicular both to the plane of projection, and to the plane of that circle.

Scholium.

There are other Projections of the Sphere, as the Cylindrical, the Scenograpbic which belongs to Perfpective, the Globical which belongs to Geography, Mercators, for which fee Navigation, \&c.

A X I O M.

The Place of any vifible point of the Sphere upon the plane of projection, is where the projecting line cuts that plane.

Cor. If the eye be applied to the projecting point, it will view all the circles of the Sphere, and every part of them, in the projection, juft as they appear from thence in the Sphere itfelf.

Scholium.

The Projection of the Sphere is only the fhadow of the circles of the Sphere upon the plane of Projection, the light being in the place of the eye or projecting point.

The Signification of fome Characters.

+ added to.
- fubtracting the following quantity.
$<$ an angle.
$=$ equal to.
\perp perpendicular to.
|| paraliel to.
: : a proportion,

[3]

SECT. I.

The Orthograpbic Projection of the Sphere.

PROP. I.

IF a rigbt line, AB is projected upon a plane, it is Fig projected into a right line; and its length will be to 3. the length of the projection, as radius to the cofine of its inclination above that plane.

For let fall the perpendiculars $\mathrm{A} a, \mathrm{~B} b$ upon the plane of projection, then $a b$ will be the line, it is projected into; but by trigonometry $A B$: is to $A o$ or $a b:$: as radius : to the fine of B or cofine of $o A B$.

Cor. 1. If a rigbt line is projected upon a plane, parallel thereto, it is projeEted into a right line parallel and equal to itfelf.

Cor. 2. If an angle be projected upon a plane wbicb is parallel to the troo lines forming the angle; it is projected into an angle equal to itfelf.

Cor. 3. Any plain figure projected upon a plane parallel to itfelf, is projeeted into a figure fimilar and equal to itfelf.

Cor. 4. Hence alfo the area of any plain figure, is to the area of its projection : : as radius, to the cofine. of its elevation or inclination.

P R O P. II.

A circle perpendicular to the plane of projection, is. projected into a rigbt line equal to its diameter.

For projecting lines drawn through all the points of the circle fall in the common fection of the planes line (Geom. V. 3.), and equal to the diameter of the circle; becaufe the planes interfect in that diameter. Q. E. D.

Cor. Hence any plane figure, perpendicular to the plane of projeciion is projecied into a right line. For the perpendiculars from every point, will all fall in the common interfection of the fgiure with the plane of projection.
P R O P. III.

1. A circle parallel to the plane of prijeciion is projected into a circle equal to itfelf, and concent vic with the primitive.

Let BOD be the circle, I its center, C the center of the fphere, the points I, B, \cdots, D, are projected into the points C, L, F, G. And therefore OICF, and BICL are rectangled parallelograms. Confequently $\mathrm{LC}=\mathrm{BI}=\mathrm{OI}=\mathrm{FC}$, (Geom.
III. .). Q. $E . D$.

Cor. The radius CL or CF is the cofine of the circle's diftance from the primitive, for it is the fine of AB .

PROP. IV.

2. An inclined circle is projected into an ellipfs wobofe tranfverfe axis is the diameter of the circle.

Let ADBH be the inclined circle, P its center; and let it be projected into adbb; draw the plane ABFC a through the center C of the fphere, perpendicular to the plane of the given circle and plane of projection, to interfect them in the lines $\mathrm{AB}, a b$; draw G.FH, DE, perpendicular, and DQ parallel to $A B$; then becaufe the line GP, and the plane of projection are both perpendicular to the

Sect. I. OF THE SPHERE.
the plane ABF ; therefore GH is parallel to the Fig. plane of projection, and therefore to $g b$.

In the circle $\mathrm{ADB}, \mathrm{DQ}^{2}=\mathrm{GQH}=g q h$, and and $\mathrm{BP}^{2}=\mathrm{GP}^{2}=g p^{2}$. And (Geom. V. 12.) BP : EP or $\mathrm{DQ}:: b p: e p$ or $d q$, and $\mathrm{BP}^{2}: \mathrm{DQ}^{2}::$ $b p^{2}: d q^{2}$; that is, $g p^{2}: g q b:: b p^{2}: d q^{2}$; and therefore $a g b b$ is an ellipfis, whofe tranfverfe $g b$ is the diameter of the circle. 2.E.D.

Cor. r. Since ab is perpendicular to gh , therefore $a b$ is the conjugate axis; and is twice the fine of the $<\mathrm{ABb}$ to the radius gp; that is, the conjugate axis is equal to twice the cofine of the inclination, to the radius of the circle.

Cor. 2. The tranfverfe axis is equal to twice the cofine of its diftance from its parallel great circle. For $\mathrm{g}^{b}=\mathrm{GH}={ }_{2} \mathrm{AP}=$ twice the fine of AK .

Cor. 3. The extremities of the conjugate axis are diftant from the center of the primitive, by the fines of the circles neareft and greateft diftance from the pole of the primitive. Thus $a \mathrm{C}$ is the fine of AN , and $b \mathrm{C}$ the fine of BN .

Cor. 4. Hence alfo it is plain that the conjurate axis always paffes thro' the center C of the primitive; and is always in the line of meafures of that circle.

Scholium.

Every circle in the projection reprefents two equal circles, parallel and equidiftant from the primitive. Every right line reprefents two femicircles, one towards the eye, the other in the oppofite fide. Every ellipfis reprefeats two equal circles, but contrarily inclined as AB, CD; one above the primitive the other below it.

And now the Theory being laid down, it remains only to deduce thence, fome fhort rules for practice, as follows.

PROP.

6 ORTHOGRAPHIC PROJECTION

Fig.

PROP. V. Prob.

5. To project a circle parallel to the primitive.

> Rule.

Take the complement of its diftance from the primitive, and fet it from A to E; and with the center C and radius $\mathrm{CD}=$ perpendicular EF , defcribe the circle $\mathrm{D} g \mathrm{G}$.

> By the plain fale.

Take the fine of its diftance from the pole of the primitive; with that radius and the center C defcribe the circle.

> P R O P. VI. Prob.
4. To project a rigbt circle, or one that is perpendicular to the plain of projection.
Rule.

Thro' the center C of the primitive, draw the diameter AB , and take the diftance from its paraldel great circle, and fet from A to E, and from B to D , and draw ED , the right circle required.

> By the fcale.

Take the fine of the circle's diftance from its parallel great circle $A B$, and at that diftance draw a parallel ED for the circle required.
P R O P. VII. Prob.

To projeEt a given oblique circle.
Rule.
6. Draw the line of meafures AB , and take the circle's neareft diftance from the primitive, and fet from

Sect. I. OF THE SPHERE, \&c.
from B to D, upwards if it be above the primitive; Fig. or downward, if below ; likewife take its greateft $\cdot \boldsymbol{6}$. diftance, and fet from A to E , and draw ED , and let fall the perpendiculars EF, DG; and bifect FG in H , and erect the perpendicular KHI, making $\mathrm{KH}=\mathrm{HI}=$ half ED; then defcribe an ellipfis (by the Conic Sections) whofe tranfverfe is IK and conjugate FG ; and that fhall reprefent the circle given.

By the fcale.

Draw the line of meafures AB ; and take the 6 . fines of the circle's neareft and greateft diftance from the pole of the primitive, and fet them from the center C to F and G , (both ways if the circle encompafs the pole, but the fame way if it lie on one fide the pole;) bifect FG in H , and erect HK , HI perpendicular to FG , and $=$ to the radius of the circle given, or the fine of its diftance from its own pole; about the axes FG, KI deicribe an ellipfis, and it is done.

Scholium.

An ellipfis great or fmall may be defcribed by 10 : points, thus; thro' the center D of the circle and ellipfis, draw $\mathrm{BD} \perp$ the tranfverfe AR ; and on AR erect a fufficient number of perpendiculars IK, $i k \& c$. and make as DB or DA : DE : : IK : IF : : ik: if \&c. then thro' all the points $\mathrm{E}, \mathrm{F}, f, \& \mathrm{c}$. draw a curve. See Prop. 76. elliplis.

P R O P. VIII. Prob.

To find the pole of a given ellipfs.

Rule.

Thro' the center of the primitive C, draw the 7 : conjugate of the ellipfis; on the extreme points F, G, erect the perpendiculars $F E, G D$, or fet the tranfverfe

8 ORTHOGRAPHIC PROJECTION

Fig. tranfverfe IK from E to D, and bifect ED in R, 7. and let fall RP perpendicular to $A B$, then is \vec{P} the pole.

> By the fcale.
7. Take CF, and CG, and apply to the fines, and find the degrees anfwering or the fupplements; then take the fine of half the fum of thefe degrees, if F, G be both on one fide of C, or the fine of half the difference, if they lie on contrary fides; and fet it from C to the pole P .

Or tous; apply the femi-tranfverfe IH to the fines, and fet the degrees from E to R; and draw $R \mathrm{P} \perp$ to AB ; and P is the pole.

> P R O P. IX. Prob.

To meafure an arch of a parallel circle; or to fet any number of degrees on it.

Rule.
With the radius of the parallel, and one foot in C defcribe a circle $\mathrm{G} g$, draw CGB , and Cgb ; then $\mathrm{B} b$ will meafure the given arch $\mathrm{G} g$; or Gg will contain the given number of degrees fet from \mathbf{B} to b. So that either being given finds the other.

> P R O P. X. Prob.

To meafure any part of a rigbt circle.
Rule.
8. In the right circle ED , let $\mathrm{EA}=\mathrm{AD}$; and let AB be to be meafured. Make $\mathrm{CF}=\mathrm{AE}$; with extent $\mathrm{BA}=\mathrm{FG}$ defcribe the arch GI; draw CGK to touch it in G; then is HK the meafure of AB . For $\mathrm{FG}=\mathrm{S} .<\mathrm{HCK}$ to the radius CF or AE , and BA is the fame, by Cor. Prop. III.

Other-

Otberwife tbus.

On the diameter ED, defcribe the femicircle END, draw AN, BO, LP perpendicular to ED, then ON is the meafure of BA, and NP of AL; and ON or NP may be meafured as in Prop. IX.

By the fcale.

Let AL be to be meafured. Draw CD; and LM parallel to $A C$, then CM applied to the fines gives the degrees. For radius $\mathrm{CD}: \mathrm{AD}:$: CM : AL.

Cor. If the right circle paffes tbro' the center, there is no more to do, but to raife perpendiculars on it, which will cut the primitive, as required. Or apply the part of the right circle to the line of fines.
P R O P. XI. Prob.

To Set off any number of degrees upon a right circle, DE.
Rule.

Draw $\mathrm{CA} \perp \mathrm{DE}$, and make the $<\mathrm{HCK}=$ the degrees given, make $\mathrm{CF}=$ radius AE , take FG the neareft diftance, and fet from A to B; then $\mathrm{AB}=<\mathrm{HCK}$, the degrees propofed.

Otberwife tbus.
On ED defrribe the femicircle END, then by Prop. IX. fet off NP $=$ degrees given, draw PL perpendicular to ED, then AL contains the degrees required.

Or thus by the fcale.

Draw $C D$, take the given degrees of the fines, and fet from C to M , and draw ML parallel to $C A$, then $A L=$ arch required.

P R O P,

ORTHOGRAPHIC PROJECTION

Fig.
PR O P. XII. Prob.
9. To meafure an arch of an ellipfis; or to fet any 10. number of degrees upon it.

Rule.

About AR the tranfverfe axis of the ellipfis, defcribe a circle $A B R$; erect the perpendiculars $\mathrm{BED}, \mathrm{KFI}$, on AR ; then BK is the meafure of EF , or EF is the reprefentation of the arch BK. And $B K$ is to be meafured, or any degrees fet upon it, as in Prop. IX.

Scholium.

There Problems are all evident from the three firft propofitions, and need no other demonftration. If the fphere be projected on any plane parallel to the primitive, the projection will be the very fame; for being effected by parallel lines, which are always at the fame diftance, there will be produced the fame figure, or reprefentation. Of all orthographic projections, thofe on the meridian or on the folititial colure, commonly called the Analem$\overline{\mathrm{ma}}$, is moft ufeful; becaufe a great many of the circles of the fphere fall into right lines or circles, whereas in the projections upon orher planes, they are projecied into ellipfes, which are hard to defori've; which makes thefe forts of projection to be neglected.

And by the fame rules that the circles of the fphere are projected upon a plane, any other figure may likewife be orthographically projected; by letting fail perpendiculars upon the plane from all the angles, or all the points of the figure, and joining thefe points with right or curve lines, as they are in the figure itfelf.

By this kind of projection, either the convex or concave fide of the fphere, may be projected; which

Sect. I. OF THE SPHERE, \&c.
which is peculiar to this fort of projection ; that Fig. is, either the hemirphere towards you, or that from 9 . you, may be projected upon the plane of its great circle. And fince in fome cafes they both have the fame appearance, it ought to be mentioned whether it is.

But if both the convex and concave fides of the fame bemifpbere be projected; that is, if you make two projections; one for the convex, the other for the concave fide; the circles in one will be inverted in refpect of the other, the right to the left, \&c. Becaufe in looking at the fame hemifphere, it will not have the fame appearance, when you look at the contrary fides of it; becaufe you look contrary ways at it, to fee the external and internal furfaces.

[12]

ig.

S E C T. II.

The Stereographic Projection of the Sphere.

PROP. I.

$\mathcal{A}^{N r}$ circle pafing tbro the projecring point, is projected into a rigbt line.

For all lines drawn from the projecting point, to this circle, pafs thro' the interfection of this circle and plane of projection, which is a right line.

Cor. I. A great circle pafing thro' the poles of the primitive is projected into a right line pafing thro. the center.

Cor. 2. Any circle paffing tbro' the projecting point is projected into a rigbt line perpendicular to the line of meafures, and diftant from the center, the Semitangent of its nearef diftance from the pole oppofite to
12. the projecting point. Tbus the circle AE is projected into a rigbt line pafing tbro' G , and perpendicular to BC , the line of meafures, and GC is the Semitangent of EM.
P R O P. II.

Every circle (tbat paffes not through the projecting point) is projected into a circle.
11. Cafe I. Let the circle EF be parallel to the primitive BD ; lines drawn to all points of it from the projecting point A , will form a conic furface, which being cut parallel to the bafe by the plane BD , the fection GH (into which EF is projected) will be a circle by the conic fections.

Cafe II. Let BH be the line of meafures to the Fig. circle EF , draw FK parallel to BD , then arch AK 12 . $=\mathrm{AF}$, and therefore $<\mathrm{AFK}$ or $\mathrm{AHG}=\mathrm{AEF}$; therefore in the triangles AEF, AGH, the angles at E and H are equal, and the angle A common; therefore the angles at F and G are equal. Therefore the cone of rays AEF (whofe bafe EF is a circle) is cut by fubcontrary fection, by the plane of projection BD, and therefore, by the conic fections, the fection GH (which is the projection of the circle EF) will alfo be a circle. Q. E. D.

Cor. When AF is equal to AG , the circle EF is projected into a circle equal to it felf.

For then the fimilar .triangles AHG and AEF, will alfo be equal, and $\mathrm{GH}=\mathrm{EF}$.

P R O P. III.

Any point on the Spbere's furface is projected into a point, diftant from the center, the Semi-tangent of its difance from the pole oppofite to the projecting point.

Thus the point E is projected into G, and F into H ; and CG is the femi-tangent of EM, and CH of MF.

Cor. I Agreat circle perpendicular to the primitive is projected into a line of femi-tangents pafing thro ${ }^{\circ}$ the center, and produced infinitely.

For MF is projected into CH its femi-tangent, and EM into the femi-tangent CG.

Cor. 2. Any arch EM of a grest circle perp. to the primitive; is projected into the femi-tangent of it.

Thus EM is projected into GC.
Cor. 3. Any arch EMF of a great circbe is projected into the fum of its femi-tangents, of its greateft

STEREOGRAPHIC PROJECTION

Fig. and leaft diftances from the oppofite pole M , if it lye $\mathbf{1 2}$. on buth fides of M , or the dif. of the femi-tangents, when all on one fide.

PROP. IV.

13. The angle made by two circles on the furface of the Sphere is equal to that made by their reprefentatives upon the plane of projection.

Let the angle BPK be projected. 'Thro' the angular point P and the center C, draw the plane of a great circle PED perpendicular to the plane of projection EFG. Let a plane PHG touch the fphere in P ; then fince the circle EPD is perpendicular both to this plane and to the plane of projection, therefore it is perpendicular to their interfection GH. The angles made by circles are the fame as thofe made by their tangents, therefore in the plane PGH , draw the tangents $\mathrm{PH}, \mathrm{PF}, \mathrm{PG}$ to the arches, $\mathrm{PB}, \mathrm{PD}, \mathrm{PK}$; and thefe will be projected into the lines $p \mathrm{H}, \mathrm{pF}, \mathrm{pK}$: Now I fay the $<\mathrm{HPG}=<\mathrm{HpG}$. For the angle $\mathrm{CPF}=\mathrm{a}$ right angle $=\mathrm{Cp} A+\mathrm{CAP}$; therefore taking away the equal angles CPA and CAP, and $<p P F$ $=\mathrm{C} p \mathrm{~A}$ or $\mathrm{P}_{p} \mathrm{~F}$; confequently $p \mathrm{~F}=\mathrm{PF}$. Therefore in the right angled triangles PFG and $p \mathrm{FG}$, there are two fides equal and the included $<$ right ; therefore hypothenufe $\mathrm{PG}=p \mathrm{G}$. And for the fame reafon in the right angled triangles PFH and $p \mathrm{FH}, \mathrm{PH}=\mathrm{pH}$. Laftly in the triangles PHG and $p \mathrm{HG}$, all the fides are refpectively equal, and therefore $<\mathrm{P}=<p . \quad$ Q. $E . D$.

Cor. I. The rumb lines projected make the fame angles with the meridians as upon the giobe; and therefore are logaritbmic jpirais on the plain of the equinollial. For every particle of the rumb coincides with fome great circle.

Cor.

Sect. II. OF THE SPHERE.
Cor. 2. The angle made by two circles on the jphere Fig. is equal to the angle made by the radii of their projections at the point of interfection. For the angle made ly two circles on a plane is the fame with that made by their radii drazen to the point of interfection.

PROP. V.

The center of a projected (lefler) circle perpendicular to the primitive, is in the line of meafures diftant from the center of the primitive, the fecant of the lefSer circles diftance from its own pole; and its radius is the tangent of that diftance.

Let A be the projecting point, EF the circle to 14, be projected, GH the projected diameter. From the centers C, D draw CF, DF, and the triangles $\mathrm{CFI}, \mathrm{DFI}$ are right angled at I; then $<\mathrm{IFC}=$ $<\mathrm{FCA}=2<\mathrm{FEA}$ or $2 \mathrm{FEG} \neq 2<\mathrm{FHG}=$ $<\mathrm{FDG}$, therefore $\mathrm{IFC}+\mathrm{IFD}=\mathrm{FDG}+\mathrm{IFD}$ $=$ a right angle; that is CFD is a right angle, and the line $C D$ is the fecant of BF , and the radius FD is the tangent of it. 2.E.D.

Cor. If thefe circles be a aually defcribed, 'tis plain the radius FD is a tangent to the primitive at F , where the leffer circle cuts it.

PROP. VI.

The center of Projection of a great circle is in the line of meafures, diffant from the center of the primitive, the tangent of its inclination to the primitive; and its radius is the fecant of its inclination.

Let A be the projecting point, EF the great cir- 15 . cle, GH the projected diameter, D the center; B 2 draw

i6 STEREOGRAPHIC PROJECTION

Fig. draw DA. The angle EAF being in a femicir15. cle is right. In the right angled triangle GAH, AC is perpendicular to GH , therefore $<\mathrm{GAC}=$ AHC and their double, $\mathrm{E} \because \mathrm{B}=\mathrm{ADC}$, and their complements. $\mathrm{ECF}=\mathrm{CAD}$. Therefore CD is the tangent of ECI , and radius AD its fecant. 2 E.D.
16. Cor. I. If the great oblique circle AGBH be actually defrribed upon the primitive AIB. I fay, all great circles paling tbro' G will bave the centers of their projections in the line RS drawn tbro' the center D, perpendicular to the line of meafures IH.

For fince all great circles cut one another at a femicircle's diftance, all circles paffing thro' G muft cut at the oppofite point H ; and therefore their centers muft be in the Line RDS.

Cor. 2. Hence alfo if any oblique circle GLH be required to mako any given angle with another circle BGAH, it will be projecied the Same way with regard to GAH confdered as a primitive, and RS its line of meafures; as the circle BGA is on the primitive BIA, and line of meafures ID. And therefore the tansent of the angle AGL to the radius GD, fet from D to N , gives the center of GL .

For the $<$ NGD will then be equal to AGL, by Cor. 2. Prop. IV. and therefore GLH is rightly projected.

Cor. 3. And for the Same reafon, if N be the center of the circle GgHR ; the centers of all circles palfing thro' g and K , will be in the line $r \mathrm{~N} s$ perpendicular to RS; So n is the center of grR. But then as g, R do not reprefent oppofite points of the circle GgH , therefore all circles paffing tbro'g, R, (as grR) witl be leffer circles, except GgHR.

S с н о lium.

Of all great circles in the projection, the primitive is the leaft. For the radius of any oblique great circle (being the fecant of the inclination) is greater than the radius of the primitive; as the fecant is always greater than the radius. Therefore every oblique great circle in the projection is greater than the primitive.

PROP. VII.

The projected extremities of the diameter of any cirs cle, are in the line of meafures, diftant from the center of the primitive circle, the Semi-tangents of its: neareft and greateft diftances from the pole of projection oppofite to the projectivg point.

For the diameter of the circle EF is projected into GH , from the projecting point A. But GC 17 . is the femi-tangent of EB , and CH the femi-tangent of BF. Q.E.D.

Cor. 1. The points where an inclined great circle 15 cuts the line of meafures, within and without the primitive, is diftant from the center of the primitive, the tangent and co-tangent of balf the complement of the circle's inclination to the primetive

For $\mathrm{CG}=$ tangent of half EB , or of half the complement of IE the inclination. And (becaufe the $<\mathrm{E} \therefore \mathrm{F}$ is right; CH is the co-tanjent of GAC. or half EB.

Cor. 2. Hence the center D of a projected circle is $\mathrm{I} \%$. in the line of meafures diftant, from the center of the 18 . primitive, balf the difference of the femi-tangents of its near. f and greateft ditance from the oppofite pole, if it encompaifes that pole; but balf the fum of the fe-mixi-tangents if it lye on one fide the pole of projection. B 3

Cor.

18 STEREOGRAPHIC PROJECTION

Fig. Cor. 3. And the radius is balf the fum of the fe-mi-tangents, if the circle encompaffes the pole; or balf. the difference if it lyes on one fide.
17. Cor. 4. Hence alfo if pq be the projeited poles, it will be $q \mathrm{G}: p \mathrm{G}:: q \mathrm{H}: p \mathrm{H}$.

For draw $\mathrm{G} n$ parallel to $q \mathrm{~A}$, and fince P, Q are the poles, therefore $q A p$ is a right angle, and fince the angles GA p and $p \mathrm{AH}$ are equal, and $\mathrm{G} n$ perpendicular to $\mathrm{A} p$, therefore $\mathrm{GA}=\mathrm{A} n$; whence by fimilar triangles $q \mathrm{G}: q \mathrm{H}:: \mathrm{A} n$ or AG:AH:: $\mathrm{G} p, \mathrm{pH}$, (Geom. II. 25.) And confequently the line $q H$ is cut horomonically in the points G, p.

PROP. VIII.

The projected poles of any circle are in the line of meafures, within and witbout the primitive, and diftant from its center the tangent and co-tangent of balf its inclination to the primitive.
19.

The poles P, p of the circle EF are projected into D and d; and CD is the tangent of CAD or half BCP, that is, of half GCI, the inclination of the circle ICK, parallel to EF. Likewife C d is the tangent of CAd, or the co-tangent of CAD. 2 E. D.
Cor. I. The pole of the primitive is its center; and the pole of a right circle is in the primitive.
19. Cor. 2. The projected center of any circle is always. between the projected pole (neareft to it on the Sphere) and the center of the primitive; and the prajected centers of all circles lye between the projected poles.

For the middle point of EF or its center is projected into S; and all the points in $\mathrm{P} p$ (in which are all the centers) are projected into Dd.

Cor. 3. If P be the projecled center of any circle Fig. EFG, any rigbt lines EG, FH paling thro' P will 20. intercept equal arches EF, GH.

For in any circle of the fphere, any two lines, paffing thro' the center, intercept equal arches; and thefe are projected into right lines, paffing thro' the projected center P , and therefore EF , GH , reprefent equal arches.

PR O P. IX.

If EFGH, efyb reprefent two equal circles, where- 20. of EFG is as far diftant from its pole P , as efg is 2 I . from the projecting point. 1 ' Jay, any two right lines (eEP, and $f \mathrm{FP}$,) being drawn tbro' P , will intercept equal arcbes (in reprefentation,) of thefe circles; on the fame fide, if P falls within the circles; but on the contrary fide, if witbout; tbat is, $\mathrm{EF}=\mathrm{ef}$, and $\mathrm{GH}=g b$.

For by the nature of the fection of a fphere; any two circles paffing thro' two given points or poles on the furface of the fphere, will-intercept equal arches of two other circles equidiftant.from thefe poles. Therefore the circles EFG and efg. on the fphere, are equally cut by the planes of any: two circles paffing thro' the projecting point and the pole P , on the fphere. But thefe circles (by. Prop. I.) are projected into the right lines Pe and $\mathrm{P} f$, paffing thro' P . And the intercepted arches. reprefenting equal aiches on the fphere, are there-. fore equal, that is, $\mathrm{EF}=e f$, and $\mathrm{GH}=g b$.

Cor. I. If a.circle is projected into a rigbt line EF, 22perpendicular to the line of meafures EG; and of fromthe center C a circle efP be defcribed paffing tbro' itspole P , and $\mathrm{P} f$ he drawn; then arch ef $=\mathrm{EF}$. And if any otber circle be defcribed whofe cuertex is P , thearch ef will alsocys be equal to EF.

20 STEREOGRAPHIC PROJECTION

Fig. Cor. 2. Hence alfo, if from the pole of a great circie there be drawn two right lines, the intercepted arch. of the projecied great circle will be equal to the intercepted arch of the primitive.
23. Cor 3. After the fame manner, if there be two 24. equal circles EF , ef, whereof one is as far from the pole P , as the other is from the pole of projection e, oppofite to the projecting point. Then any circle drawn thro' the points P, C, will intercept equal arch EF =ej; and $\mathrm{GH}=g b$, between it and the line of meafures P'CG.

For this is true on the fphere, and their projections are the fame.

Cor. 4. If from an angular point be drawn two rigbt lines thro' the poles of its fides; the intercepted arch of the primutive, will be equal to that angle.

For the diftance of the poles is equal to that angle.
PROP. X.
25. If QH, NK be two equal circles, wobereof NK 26. is as far from the projecting point as QH from its pole P ; and if they be projected into the circles wbofe radii are MC or CL , and DF or FG, F being the center of DG, and E the projecied pole. I fay, the pole E will be diftant from their centers in proportion to the radii of the circles; that is, $\mathrm{CE}: \mathrm{EF}: \mathrm{CL}$: DF or FG.

For fince NK and ML are parallel, and arch $\mathrm{NI}=\mathrm{PH}$, therefore $<\mathrm{ELI}=\mathrm{NKI}($ or $n \mathrm{KI})=$ GIP; therefore the triangles IEL and IEG are fimilar, whence EL:EI :: EI : EG. Again the angle $E M I=K N I=P I Q$, and therefore the triangles IEM and IED are fimilar, whence EM : $\mathrm{El}:: \mathrm{EI}: \mathrm{ED}$. Therefore $\mathrm{EI}^{2} \xlongequal{\mathrm{EL}} \times \mathrm{EG} \overline{\overline{\mathrm{M}}}$

Sect. II. OF THE SPHERE.
$E M \times E D$. Confequently $E M: E L:: E G: E D ; F i g$ and by compofition $\frac{\mathrm{EM}+\mathrm{EL}}{2}: \frac{\mathrm{EM}-\mathrm{EL}}{2}$:
$\frac{E G+E D}{2}: \frac{E G-E D}{2}$; that is, $C M: E C: F G:$
FF. 2 E. D.
Cor. I. Hence if the circle KN be as far from 25. the projecting point, as QH is from either of its poles, 26. and if E, O, be its projected poles; then will EL : EM : : ED : : EG : : OD : UG.

This follows from the foregoing demonftration, and Cor. 4. Prop. VII.

Cor. 2. Hence aljo if F be the center, and FD tbe 25. radius of any circle. QH , and E, O the projected 26. poles; then EF : DF : : DF : FO.

For it follows from Cor. 1 , that $\frac{E G+E D}{2}$:
$\frac{\mathrm{EG}-\mathrm{ED}}{2}:: \mathrm{OG}+\mathrm{OD}: \frac{\mathrm{OG}-\mathrm{OD}}{2}$.
Cor. 3. Hence if the circle DBG, be as far from 27. its projected pole P , as LMN is from the projecting 28. point; and if any right lines be dirawn tbro P , as MPG, NPK, they will cut off fimilar arches GK, MN in the two circles.

For from the centers C, F, draw the lines CN, $F K$, then fince the angles CPN, and FPK are equal, and by this Prop. CP : CN : : FP : FK; therefore (Geom. II. 16.); the triangles PCN and PFK are fimilar; and the angle $\mathrm{PCN}=<\mathrm{PFK}$; therefore the arches MN and GK are fimilar.

Cor. 4. Hence alfo if thro' the projected pole P of. 27. any circle DBG, a rigbt line BPK be drawn. Then 28. I fay the degrees in the arch GK ball be the meafure of DB in the projection. And the degrees in DB , Sall be the ineafure of GK in the projection.

22 STEREOGRAPHIC PROJECTION

Fig. For (by Prop. IX.) the arch MN is the meafure of DB , and therefore GK which is fimilar to MN , will alfo be the meafure of it.

Cor. 5. The centers of all projecied circles are all beyond the projected poles (in refpect to the center of the primitives); and none of their centers can fall between them.

Cor. 6. Hence it follows (by Cor. 5. and Pr. VIII. Cor. 3.) that all circles that are not parallel to the primitive bave equal arches on the Sphere reprefented by unequal arches on the plane of projection.

For if P be the projected center, then GH is greater than EF .

Scholium.

It will be eafy by the foregoing propofitions to defcribe the reprefentation of any circle, and the reverfe will eafily fhow what circle of the fphere any projected circle reprefents. What follows hereafter is deduced from the foregoing propofitions, and will eafily be underftood without any other demonftration.

If the fphere was to be projected on any plane parallel to the primitive, 'tis all the fame thing. For the cones of rays iffuing from the projecting point, are all cut by parallel planes into fimilar fections, it only makes the projections bigger or lefs, according to the diftance of the plane of projection, whillt they are fill fimilar; and amounts to no more than projecting from different fcales upon the fame plane. And therefore the projecting the fphere on the plane of a leffer circle is only projecting it upon the great circle parallel thereto, and continuing all the lines of the fcheme to that leffer circle.

PROP.

P R O P. XI. Prob.

To draw a circle parallel to the primitive at a given difance from its pole.

> Rule.

Thro' the center C draw two diameters $\mathrm{AB}, \mathrm{DE}, 29$. perpendicular to one another. Take in your compaffes the diftance of the circle from the pole of the primitive oppofite to the projecting point, and fet it from D to F; from E draw $E F$ to interfect $A B$ in I; with the radius $C I$, and center C, defcribe the circle GI required.

> By the plain Scale.

With the radius CI , equal to the femi-tangent of the circles diftance from the pole of projection oppofite the projecting point, defribe the circle IG. Here the radius of projection CA, is the tangent of 45°, or the ferm-itangent of 90°.

> P R O P. XII. Prob.

To drawo a leffer circle perpendicular to the primitive at a given diftance from the pole of that circle.
Rule.

Thro' the pole B draw the line of meafures $\mathrm{AB}, 30$. make BG the circle's diftance from its pole, and draw CG, and GF perpendicular to it ; with the radius FG defcribe the circle GI required.

> By the Scale.

Set the fecant of the circle's diftance from its pole from C to F , gives the center. With the tangent of that diftance for a radius, defcribe the circle GI.

Or thus, make BG the circle's diftance from its pole; and GF its targent, fet from G, gives F the center;

24 STEREOGRAPHIC PROJECTION

Fig. center ; thro' G defcribe the circle GI from the censo. ter F.

Cor. Hence a great circle perpendicular to the primitive, is a right line CDE drawn tbro' the center perpendicular to the line of meafures.

Scholium.

When the center F lyes at too a great a diftance; draw EG, to cut $A B$ in H; or lay the femi-tangent of DG from C to H . And thro' the three points G, H, I, draw a circle with a bow.

P R O P. XIII. Prob.
To defrribe an oblique circle at a given diftance froms a pole given.
Rule.
31. Draw the line of meafures $A B$ thro' the given point p, if that point is given; and diaw DE \perp to it, alfo draw Epl. Or if the point p is not given, fet the height of the pole above the primitive from B to P . Then from P fet of $\mathrm{PH}=\mathrm{PI}=$ circle's diftance from its pole; and draw EH, EI, to interfect $A B$ in F and G. About the diameter $F G$ defcribe the circle required.

> By the Scale.

If the point P is given, apply $C p$ to the femi-tangents and it gives the diftance of the poie from D , the pole of projection oppofite to the projecting point. This diftance being had, you'll eafily find the greateft and neareft diftances of the circie from the pole of the primitive oppofite to the projecting point; take the femi tangents of thefe diftances and fetfrom C to G and F , both the fame way if the circle lye all on one fide, but each its own way, if on different fides of D. And then $F G$ is the diameter of the circle required to be drawn.

Cor.

Cor. 1 . If F be the pole of a great circie as of Fig. DLE. Draw EFH, and make $\mathrm{HP}=\mathrm{DH}$, and 3 I . draw Ep P , and then P is its center.

Or thus, draw EFH tbro' the pole F, make HK 90 degrees; araw EK cutting the line of meafures in L . Tbro' the three points $\mathrm{D}, \mathrm{L}, \mathrm{E}$, draw the great circle required.

Cor. 2. Hence it will be eafy to draw one circle parallel to another.

> P R O P. XIV. Prob.

Thbro' two given points A, B, to draw a great circle.
Rule.
'Thro' one of the points A, draw a line thro' the 32. center, ACG; and EF perpendicular to it. Then draw $A F$, and EG perpendicular to it. Thro' the three points A, B, G draw the circle required.

Or thus; From E (found as before) draw EH, and then HCI, and laftly EIG, gives G a third point, thro' which the circle muft pafs.

By the Scale.

Draw ACG; and apply AC to the femi-tangents, find the degrees, fet the femi-tangent of its fupplement from C to G, for a third point.

Or thus; Apply AC to the tangents, and fet the tangent of its complement from C to G. And thro' the three points ABG , defcribe the circle required.

For fince HEI or AEG is a right angle, therefore A, G are oppofite points of the fphere; and therefore all circles paffing thro' A and G are great circles.

> Scholium.

If the points A, B, G lie nearly in a right line, then you may draw a circle thro' them with a bow. PROP.

26 STEREOGRAPHIC PROJJECTION

 Fig.P R O P. XV. Prob.

About a pole given, to defrribe a circle tbro' a given point.
Rule.
33. Let P be the pole, and B the given point ; thro' P, B defcribe the great circle AD (by Prop. XIV.), whofe center is E ; thro' the center C draw CPH ; and from the center E , draw EB , and BF perpendicular to it. To the center F, and radius $F B$ defcribe the circle BGH required.

> P R O P. XVI. Prob.

To find the poles of any circle FNG.
Rule.

Thro' its center draw the line of meafures AG, and DE perpendicular to it. Draw EFH, and fet its diftance (from its own pole) from H to P , and draw $\mathrm{E} p \mathrm{P}$, then p is the pole.

Or thus, Draw EFH, EIG, and bifect HI in \mathbf{P}, and draw $\mathrm{E} p \mathrm{P}$, and p is the internal pole. Laftly draw PCQ , and $\mathrm{EQ} q$, and q is the external pole.

In a great circle DLE, draw ELK, and make $\mathrm{DH}=\mathrm{AK}$, (or $\mathrm{KH}=\mathrm{AD}$, and draw EFH , and F is the pole.

> By the Scale.

Apply CF to the femi-tangents, and note the degrees. Take the fum of thefe degrees and of the circle's diftance from its pole, if the circle lie all on one fide, but their difference if it encompaffes the pole of projection; fet the femi-tangent of this fum or difference from C to the internal pole p. And the femi-tangent of its fupplement Cq, gives the external pole q.

Or tbus, Apply CF and CG to the femi-tangents, fet the femi-tangent of half the fum of the degrees

(if the circle lies all one way) or of half the dif- Fig. ference (if it encompaffes the pole of projection), $3 \mathbf{I}$. from C to the pole p; and the femi-tangent of the fupplement, $\mathrm{C} q$ gives the external pole q.

In a great circle as DLE, draw the line of meafures $A B$ perp. to $D E$; and fet the tangent and co-tangent of half its inclination, from the center C , different ways to F and f; which gives the internal and external poles F and f.

P R O P. XVII. Prob.

To drawe a great circle at any given inclination above the primitive; or making any given angle with it, at a given point.
Rule.

Draw the line of meafures $A B$; and $D C E$ per- 34 pendicular to it. Make EK $=2 \mathrm{HD}=$ twice the complement of the circle's inclination; (or DK $=$ $2 \mathrm{AH}=$ twice the inclination); and draw EKF, then F is the center of EGD, the circle required.

Or thus; Draw DE and AB perp. to it, and let D be the point given. Make AH the inclination, and draw EGH and HCN; and ENO, to cut AB in O . Then bifect GO in F , for the center of the circle required.

> By the Scale.

Set the tangent of the inclination in the line of meafures from C to F , then F is the center. Set the femi-tangent of the complement from C to G ; then GF or DF is the radius.

Or the fecant of the inclination fet from G or D to F gives the center.

Cor. To draw an obligue circle to make a given angle with a given oblique circle DGE at D. Draw EGH , and jet the given ansle from H to I , and draro ELI. Tbro' D, L, E defcribe a great circle. PROP.

STEREOGRAPHIC PROJECTION

Fig.

P R O P. XVIII. Prob.

Througb a given point P , to draw a great circle; to make agiven angle with the primitive.

> Rule.
35. Thro' the point given P and the center C draw the line AB ; and DE perpendicular to it. Set the given angle from A to H and from H to K , and draw BGK ; with radius CG, and center C defcribe the circle GIF ; and with radius BG and center \mathbf{P} crofs that circle in F. Then with radius FP and center F, defcribe the circle LPM required.

By the. Scale.

With the tangent of the given angle and one foot in C, defrribe the arch FG. With the fecant of the given angle and one foot in the given point P, crofs that arch at F. From the center F defcribe a circle thro' the point P.
P R O P. XIX. Prob.

To draw a great circle to make a given angle with a given oblique circle FPR , at a given point P , in that circle.
Rule.
36. Thro' the center C and the given point P, draw the right line DE; and AB perpendicular to it; draw APG and make $\mathrm{BM}={ }_{2} \mathrm{DG}$; and draw AM to cut DE in I. Draw IQ perpendicular to DE , then $I Q$ is the line wherein the centers of all circles are tound which pafs thro' the point P. Find N the center of the given circle FPR, and make the angle NPL equal to the given angle, then L is the center of the circle HYK required.

Tho' P and C draw DE ; apply CP to the femi- 36. tangents, and fat the tangent of its complement from C to I (or the fecant from P to I). On DI erect the perpendicular IQ. Find the center N of FPR, and make the angle NHL = angle given, and L is the center.

Cor. If one circle is to be drawn perpendicular to another, it must be drawn tbro' its poles.
P R O P. XX. Prob.

To draw a great circle tbro' a given point P , to make a given angle with a given great circle DE.

Rule.

About the given point P as a pole (by Prop. 13. 37. Cor. 1.) defcribe the great circle FG; find I the pole of the given circle DE, and (by Prop. 16.) about the pole I (by Prop. 13.) describe the fall circle HKL at a diftance equal to the given angle, to interfect FG in H ; about the pole H defcribe (by Prop. 13.) the great circle APB required.

> PR O P. XXI. Prob.

To draw a great circle to cut two given great circles abd, elf at given angles.

Rule.

Find the poles s, r, of the two given circles, 50. by Prop. 16. about which draw two parallels $p b k$, $p n k$, at the diftances refpectively equal to the angiles given by Prop. 13. the point of interfection P, is the pole of the circle mon required.

Cor. Hence, to draw a right circle to make with an oblique circle, abd, any given angle. Draw a parallel ph at a distance from the pole of the obligue circle, equal to the given angle. Its interjection C $\quad f$ with

3 STEREOGRAPHIC PROJECTION

Fig. f with the primitive, gives the pole of the right circle get required.

P R O P. XXII. Prob.

To lay any number of degrees on a great circle, of te meafure any arch of it.

Rule.
38.

Let AFI be the primitive; find the internal pole P of the given' circle DEH (by Prop I6.) lay the degrees on the primitive from A to F, and draw PA, PF, intercepting the part required DE. Or to meafure DE, draw PEF and PDA, and AF is its meafure, and applied to the line of chords fhows how many degrees it is.

Or tbus; Find the external pole p of the given circle, fet the given degrees from I to K , and draw $p \mathrm{I}, p \mathrm{~K}$, intercepting the part DE required. Or to meafure DE , thro' D and E draw $\mathrm{pl}, \mathrm{p} \mathrm{K}$, then KI is the meafure of DE.

Or thus; Thro' the internal pole P , draw the lines DPG, and EPL; fetting the given degrees from G to L in the circle $G L$; then $D E$ is the arch required. Or if DE be to be meafured, then the degrees in the arch GL is the meafure of DE .

Or thus; Set the given degrees from G to H in the circle GL and from the external pole P , draw $p \mathrm{G}, \mathrm{pH}$, intercepting DE the arch required Or to meafure DE , draw $p \mathrm{DG}, ~ p \mathrm{EH}$, then the degrees in GH, is equal to DE.

By the Scale for rigbt Circles.

38. Let CA be the right circle, take the number of degrees off the femi-tangents and fet from C to D for the arch CD. Or if the given degrees are to be fet from A , then take the degrees off the femitangents from $9^{0^{\circ}}$ towards the beginning, and fet from A to D . And if CD was to be meafured, apply

Sect. II. OF THE SPHERE.
apply it to the beginning of the femi-tangents; and Fig. to meafure AD , apply it from 90° backwards, and the degrees intercepted gives its meafure.

Scholium.

The primitive is meafured by the line of chords, or elfe it is actually divided into degrees.

> P R O P. XXIII. Prob.

To fet any number of degrees on a leffer circle, or to meafure any arch of it.
Rule.

Let the leffer circle be DEH; find its internal pole 38. P, by Prop. 16. defrribe the circle AFK parallel to the primitive, by Prop. II. and as far from the projecting point, as the given circle DE is from its internal pole P , fet the given degrees from A to F , and draw PA, PF interfecting the given circle in D, E; then DE is the arch required. Or to meafure DE, draw PDA, PEF, and AF fhows the degrees in DE.

Or tbus; Find the external pole p, of the given circle by Prop. 16. defcribe the leffer circle AFK as far from the projecting point, as DE the given circle is from its pole p, by Prop. 11. fet the degrees from I to K and draw $p D I, p E K$, then DE reprefents the given number of degrees. Or to meafure DE ; draw $p \mathrm{DI}, p \mathrm{EK}$; and KI is the meafure of DE .

Or tbus; Let O be the center of the given circle DEH ; thro' the internal pole P, draw lines DPG, EPL, divide the quadrant GQ into go equal degrees, and if the given degrees be fet from G to L, then DE will reprefent thefe degrees. Or the degrees in GL, will meafure DE.

Or thus; Divide the quadrant GR into 90 equal. parts or degrees, and fet the given degrees from G to H , and draw $p \mathrm{DG}, p \mathrm{EH}$, from the external pole p; then DE will reprefent the given degrees. Or

$$
\mathrm{C}_{2}
$$

thro'

Fig. thro' D, E drawing $p \mathrm{DG}, p \mathrm{EH}$, then the number of equal degrees in GH is the meafure of DE .

Scholium.
Any circle parallel to the primitive is divided or meafured, by drawing lines from the center, to the like divifions of the primitive. Or by help of the chords on the fector, fet to the radius of that circle.

P R O P. XXIV. Prob.

To meafure any angle.
Rule.
By Cor. I. Prop. I3. About the angular point as a pole, defcribe a great circle, and note where it interfects the legs of the angle ; thro' thefe points of interfection, and the angular peint, draw two right lines, to cut the primitive; the arch of the primitive intercepted between them is the meafure of the angle. This needs no example.

Or thus; by Prop. 16. Find the two poles of the containing fides, (the neareft, if it be an acute angle, otherwife the furtheft) and thro' the angular point and thefe poles, draw right lines to the primitive, then the intercepted arch of the primitive is
31. the angle required. As if the angle AEL was required. Let C and F be the poles of EA and EL. From the angular point E, draw ECD and EFH. Then the arch of the primitive DH , is the meafure of the angle AEL. Scholium.
Becaufe in the Stereographic Projection of the Sphere, all circles are projected either into circles or right lines, which are eafily defcribed; therefore this fort of projection is preferred before all others. Alfo thofe planes are preferred before others to project upon, where moft circles are projected into right lines, they being eafier to defcribe and meafure than circles are; fuch are the projections on the planes of the meridian and folltitial colure.

S E C T. III.

The Gnomonical Projection of the Sphere.

PROP. I:

Every great circle as BAD is projected into a rigbt 39° line, perpendicular to the line of meafures, and diftant from the center, the co-tangent of its inclination, or the tangent of its neareft diftance from the pole of projection.

Let CBED be perpendicular both to the given circle BAD and plane of projection, and then the interfection CF will be the line of meafures. Now fince the plane of the circle BD , and the plane of projection are both perpendicular to BCDE , therefore their common fection will alfo be perpendicular to BCDE, and confequently to the line of meafures CF. Now fince the projecting point A is in the plane of the circle, all the points of it will be projected into that fection; that is, into a right line paffing thro' d, and perpendicular to $C d$. And Cd is the tangent of CD , or co-tangent of $\mathrm{C} d \mathrm{~A}$. Q. E. .D.

Cor. 1. A great circle perpendicular to the plane of 39. projection is projected into a right line paffing tbro the center of projection; and axy axch is projected into its correfpondent tangent.

Thus the arch CD is projected into the tangent C .
Cor. 2. Any point as D; or the pole of any circle, is projected into a point d'diftant from the pole of projection C , the tangent of that difance.

Cor. 3. If two great circles be perpendicular to each other, and one of them paffes thro' the pole of projec. C 3 tion;

Fig.tion; they will be projecied into two right lines per39. pendicular to earb other.

For the reprefentation of that circle which paffes thro' the pole of projection is the line of meafures of the other circle.

Cor. 4. And bence if a great circle be perpendicular to feveral other great circles, and its reprefentation pafs thro the center of projection; then all thefe circles will be reprefented by lines parallel to one anotber, and perpendicular to the line of meafures or reprefentation of that firft circle.
P R O P. II.

If two great circles interfect in the pole of projection; their reprefentations ball make an angle at the center of the plane of projection equal to the angle made by thefe circles on the fphere.

For fince both thefe circles are perpendicular to the plane of projection; the angle made by their interfections with this plane, is the fame as the angle made by thefe circles. Q, $E D$.

PROP. III.
Any leffer circle parallel to the plane of projection is projected into a circle, whofe center is the pole of projection; and radius the tangent of the circle's diftance from the pole of projection.

Let the circle PI be parallel to the plane GF, then the equal arches PC, CI are projected into the equal tangents GC, CH; and therefore C the point of contact and pole of the circle PI and of the projection, is the center of the reprefentation GH. 2 E. D.

Cor. If a circle be parallel to the plane of projection, and 45 degrees. from the pole, it is projected into a circle

Sect. III. OF THE SPHERE.
a circle equal to a great circle of the Jphere; and may Fig. therefore be looked upon as the primitive circle in this projection, and its radius the radius of projection.
P R O P. IV.

Every leffer circle (not parallel to the plane of pro- 40. jection) is projected into a conic Section, whofe tranf--verfe axis is in the line of meafures, and whofe neareft vertex is diflant from the center of the plane the tahgent of its neareft dijtance from the pole of projection; and the other vertex is diftant the tangent of its furtbeft. dijfance.

Let BE be parallel to the line of meafures $d p$, then any circle is the bafe of a cone whofe vertex is at A, and therefore that cone being produced will be cut by the plane of projection in fome conic fection; thus the circle whofe diameter is DF will be cut by the plane in an ellipfis whofe tranfverfe is $d f$; and $\mathrm{C} d$ is the tangent of CAD, and $\mathrm{C} f$ of CF. In like manner the cone AFE being cut by the plane, f will be the nearel vertex; and the other point into which E is projected is at an infinite d.ftance. Alfo the cone AFG (whofe bafe is the circle FG) being cut by the plane f is the neareft vertex; and GA being produced gives d. the other vertex. $Q^{2} E . D$.

Cor. I . If the ditance of the furtbeft point of the circle be lefs than 90° from the pole of projection, then it will be projeceed into an ellipfis.

Thus DF is projected into $d f$, and DC being lefs than 90°, the feetion $d f$ is an ellipfis, whofe vertices are at d and f; for thie plane $d f$ cuts both fides of the cone, $d \mathrm{~A}, f \mathrm{~A}$.

Cor. 2. If the furtbeft point be more than god de= grees fromi the palle of projeition, it will be projectiod

$$
\mathrm{C}_{4} \quad \text { inta }
$$

Fig. into an byperbola. Tbus the circle FG is projected into 40. an byperbola whofe vertices are f and d, and tranverfe fd.
For the plane $d p$ cuts only the fide $\mathrm{A} f$ of the cone.
Cor. 3. And in the circle EF, where the furtbeft point E is 90° from C ; it will be projected into a parabola, wolbofe vertex is f.

For the plane $d p$ (cutting the cone FAE) is pa-rallel to the fide AE.

Cor. 4. If H be the center, and $\mathrm{K}, k, 1$, the fam cus of the ellipfis, byperbola, or parabola; then $\mathrm{HK}=$ $\frac{\mathrm{A} d-\mathrm{A} f}{2}$ for tbe eliipfis, and $\mathrm{H} k=\frac{\mathrm{A} d+\mathrm{A} f}{2}$ for the byperbola; and (drawing fn perpendicular on $\mathrm{AE}) f l=\frac{n \mathrm{E}+\mathrm{F} f}{2}$, for the parabola; zobicb are the reprefentations of the circles DF, FG, FE resperively.

This all appears from the Conic Sections.

> PROP, V.
41. Let the plane TW be perpendicular to the plane of projection TV, and BCD a great circle of the jpbere in the plane TW. And let the great circle BED be projected in the rigbt line bek. Draw $\mathrm{CQS} \perp b k$, and $\mathrm{C} m \|$ to it and equal to CA , and make $\mathrm{QS}=\mathrm{Q} m$; then I fay any angle $\mathrm{Q} f=\mathrm{Q} t$.

Suppofe the hypothenufe AQ to be drawn, then fince the plane $A C Q$ is perpendicular to the plane $T v$, and $b \mathrm{Q}$ is \perp to the interfection CQ , therefore $b Q$ is perpendicular to the plane $A C Q$, and confequently $b \mathrm{Q}$ is perpendicular to the hypothenufe $A Q$. But $A Q=Q m=Q s$, and $Q s$ is alfo perpendicular to $b \mathrm{Q}$. Therefore all angles made at S cut the line $b \mathrm{Q}$ in the fame points as the angles made
at A; but by the angles at A the circle BED is Fig. projected into the line $b Q$. Therefore the angles 41 . at s are the meafures of the parts of the projected circle $b Q$; and s is the dividing center thereof. Q.E. D.

Cor. 1. Any great circle $t \mathrm{Q} b$ is projected into a line of tangents to the radius SQ .

For $\mathrm{Q} t$ is the tangent of the angle QSt to the radius QS or $\mathrm{Q} m$.

Cor. 2. If the circle $b \mathrm{C}$ pafs thro' the center of projection; then A the projecting point is the dividing center thereof. And $\mathrm{C} b$ is the tangent of its correfpondent arch CB , to CA the radius of projection.

P R O P. VI.

Let the parallel circle GEH be as far from the 4I. pole of projection C as the circle FKI is from its pole \mathbf{P}; and let the diftance of the poles C, P be bifected by the radius AO, and draw bAD perpendicular to AO; then any right line bek drawn thro' b, will cut off the arches $b l=\mathrm{Fn}$, and ge $=k f$ (fuppofing f the otber vertex), in the reprefentations of the ee equal circles in the plane of projection.

For let $G, E, R, L, H, N, R, K, I$ be refpectively projected into the points g, e, r, l, b, n, r, k, f. Then fince in the fphere, the arch $\mathrm{BF}=$ DH , and arch BG $=$ DI. And the great circle BEKD makes the angles at B and D equal, and is projected into a right line as $b l$; therefore the triangular figures BFN and DHL are fimilar, and equal; and likewife BGE, and DIK are fimilar and equal, and $\mathrm{LH}=\mathrm{NF}$, and $\mathrm{KI}=\mathrm{EG}$; whence it is evident their projections $l b=n \mathrm{~F}$, and $k f=g e$. Q.E.D.

PROP. VII.

42. If blg and Fik be tbe projections of two equal circles, whereof one is as far from its pole P as the other from its pole C ; which is the center of projection; and if the diftance of the projected poles C, p be divided in 0 , fo that the degrees in Co , op, be equal, and the perpendicular oS be erected to the line of meafires gh. I jay the lines $p n, \mathrm{Cl}$, drawn from the poles C, p thbro any point Q in the line os, will cut off the arch $\mathrm{F} n=<\mathrm{QC} p$.

For drawing the great circle GPI, in a plane perpendicular to the plane of projection. The great circle AO perpendicular to CP is projected into oS by Prop. I. Cor. 3. Now let Q be the projection of q, and fince $p \mathrm{Q}, \mathrm{CQ}$ are right lines, therefore they reprefent the great circles $\mathrm{P} q, \mathrm{C} q$. But the fpherical triangle $\mathrm{P}_{4} \mathrm{C}$ is an ifoceles-triangle, and therefore the angles at P and C are equal. But becaufe P is the pole of FI, therefore the great circle $\mathrm{P} q$ continued, will cut an arch off FI $\overline{\overline{\mathrm{E}}}<\mathrm{CPq}_{q}=<\mathrm{PC} q=<\mathrm{QC} p$ by Prop. II. That is (fince $\mathrm{F} n$ reprefents the part cut off from $\mathrm{FI}) \operatorname{arch} \mathrm{F} n=\operatorname{arch} l b$ or $<\mathrm{QC} b$. Q. $E . D$.

Cor. Hence if from the projetted pole p of any circle, a perpendicular be erected to the line of meafures; it will cut off a quadrant from the reprefentation of tbat circle.

For that perpendicular will be parallel to Os ; Q being at an infinite diftance.

PROR. YIII.

Lèt Fnk be the projertion of any circle FI, and 42. the projected pole P. And if Cg be the co-tangent of CAP, and g Beperpendicular: to the live of meafares gC , and CAP be gifeited by AO , and the line ob, be drawen to any point B , and alfo $p \mathrm{~B}$ cutting F k in i . I- Jay the angle go $\mathrm{B} \mp$ arch Fd.

For the arch PG is a quadrant, and the $<g \circ A$ $=<g p \mathrm{~A}+<o \mathrm{~A} p=$ (becaufe GCA and $g \mathrm{~A} p$ arè right angles) $g A C+o A p=g A C+C A o=<$ gAo. Therefore $g A=g o$, confequently 0 is the dividing center of $g B$ the reprefentation of $G A$; and confequently by Prop. V. $<g o \mathrm{~B}$ is the meafure of $g B$. But fince $p q$ reprefents a quadrant, therefore p is the pole of $g \mathrm{~B}$, and therefore the great clicle $p A B$ paffing thro' the pole of the circles $g B$ and $F \pi$ will cut off equal arches in both, that is $\mathrm{Fd} \pm \mathrm{gB}$ $=<g_{0} \mathrm{~B}$. Q B. D.

Cor. The $<g o \mathrm{~B}$ is the meafure of the angle gon For the triangle $g p \mathrm{~B}$ reppefents a triangle on the fphere wherein the arch which $g B$ reprefents is equal to the angle which $<p$ reprefents, becaufe $g p$ is 90 degrees. Therefore $g Q B$ is, the meafure of both.
Scholium.

Thus far I have treated of the theory; what follows is the practical part, and depends altogether on what is above delivered, in which I think no difficulty can occur: In the Gnomonical Projection, the plane projected on, is fuppofed to touctio the hemifphere to be projected, in its vertex; and the point of contact will be the center of projection. But if it be required to. project upon any plane paratle?

Fig. rallel to this touching plane, the procefs will be no 42. way different, and is only taking a greater or leffer radius of projection, according to the greater or leffer diftance; which is in effect projecting a greater or leffer fphere upon its touching plane.

When you have the fphere to project this way, upon a given plane; it will affift the imagination, if you fuppofe yourfelf placed in the center of the fphere with your face towards the plane, whofe pofition is given; and from thence projecting with your eye, the circles of the fphere upon this plane.

P R O P. IX. Prob.

43. To draw a great circle, thro' a given point, and at a given diftance from the pole of projection.

Rule.

Defcribe the circle ADB with the radius of projection, and thro' the given point P draw the right line PCA, and CE perpendicular to it ; make the angle CAE = given diftance of the circle from C, and thro' E defcribe the circle EFG, and thro' P draw the line PK touching the circle in I , then is PIK the circle required.

By the plain Scale.

With the tangent of the circle's diftance from the pole of projection C , defcribe the circle EIF, and draw PK to touch this circle; and PIK is the circle required.

> P R O P. X. Prob.
3. To draw a great circle perpendicular to a given great circle, which paffes thro' the pole of projection: and at a given diftance from tbat pale.
Rule.

Draw the primitive ADB. Let CI be the given circle, draw CL perpendicular to CI , and make the angle

Sect. III. OF THE SPHERE. 4i
angle CLI = the given diftance; thro' I draw KP Fig. parallel to CL for the circle required.

By the Scale.

In the given circle CI , fet the tangent of the given diftance, from C to I ; thro' 1 draw KP perpendicular to CI , then KP is the circle required.

> P R O P. XI. Prob.

To meafure any part of a great circle; or to fet any 44. number of degrees thereon.
Rule.

Let EP be the great circle; thro' C draw ID perpendicular to $E P$, and CB parallel to it. Let EBD be a circle defcribed with the radius of projection CB, make IA $=I B$; then A is the dividing center of EP, confequently drawing AP, the $\&$ IAP $=$ meafure of the given arch IP.

Or if the degrees be given, make the $<$ IAP $=$ thefe given degrees, which cuts off IP, the arch correfpondent thereto.

By the Scale.
Draw ICD perpendicular to EP; apply CI to the tangents, and fet the femi-tangent of its complement from C to A , gives the dividing center of EP, \&c.
P R O P. XII. Prob.

To draw a great circle to make a given angle with $5 \mathbf{1}$. a given great circle, at a given point; or to meafure an angle made by two great circles.
Rule.

Let P be the given point, and PB the given great circle. 1 raw thro' P , and C the center of projection, the line PCG, to which from C draw CA perpendicular,

42

GNOMONICAL PROJECTION

Fig. dicular, and equal to the fadius of projection. Draw 51. PA and $A G$ perpendicular to it, at G erect $B D$ perpendicular to GC, cutting PB in B; draw AO bifecting the angle CAP; then at the point O, make BOD $=$ angle given, and from D draw the line DP, then BPD is the angle required.

Or if the degrees in the angle BPD be required, from the points B, D, draw the lines BO, DO; and the angle BOD is the meafure of BPD.

Cor. If an angle be required to be made at the pole or center of projection, equal to a given angle; this is no more than draweing two lines from the center making the angle required. And if one great circle be to be drawn \perp to anotber great circle, it muft be drawn tbro' its pole.

> P R O P. XIII. Prob.
43. To project a leffer circle parallel to the primitive.

> Rule.

With the radius of projection AC, and center C, defcribe the primitive circle ADB, by Cor. Prop. III. and draw ACB, and GCE perpendicular to it.

Set the circle's diftance from its pole from B to H , and from H to D , and draw AFD. With radius $C E$ defcribe the circle EFG required.

> By the Scale.

With the radius $C E$ equal to the tangent of the circle's diftance from its pole, defcribe the circle EFG , for the circle required.
P R O P. XIV. Prob.
48. To draw a leffer circle perpendicular to the plane of projection.
Rule.

Thro' the center of projection C, draw its parallel great circle TI. At C make the angle ICN and
and TCO $=$ the given circle's diftance from its pa-Fig. rallel great circle TI; make CL equal radius of 48 . projection, and draw LM perpendicular to CL. Set LM from C to V , or CM from C to F . Then thro' the vertex V between the aflymptotes CN , CO defcribe the hyperbola WVK. Or to the focus F, and femi-tranfverfe CV, defcribe the hyperbola; for the circle required.

Otherwife by Points.

Thro' the center of projection C draw the line of meafures CF, and TCI perpendicular to it, draw any number of right lines CV, DE, GH, IK \&c. and $\mathrm{PQ}, \mathrm{RS}, \mathrm{TW}, \& \mathrm{c}$. perpendicular to TI. And by Prop. XI. make CV, DE, GH, \&cc. each equal to the diftance of the given circle from its parallel great circle ; then all the points $\mathrm{W}, \mathrm{S}, \mathrm{Q}, \mathrm{V}$, $\mathrm{E}, \mathrm{H}, \mathrm{K}, \& \mathrm{c}$. joined by a regular curve will be the reprefentation of the circle required.

Or thus.

Make the angle $i a k=$ diftance of the given circle from its parallel great circle. Then thro' the center of projection C, draw the great circle TCI parallel to the circle given, upon which erect the perpendicular $\mathrm{CA}=$ radius of projection. Alfo draw any number of right lines CV, DE, GH, IK, \&c. perpendicular to TI. Then take each of the diftances from A to C, D, G, I, \&c. and fet them from a to $c, g, d, i, \& c c$. and to ai draw the perpendiculars $c v, d e, g b, i k, \& c$. and make $C V$, $\mathrm{DE}, \mathrm{GH}, \mathrm{IK},: \& \mathrm{c}$. refpectively equal to $c v, d e$, $g b, i k$, \&cc. which gives the points V, E, H, K, \&xc. after the fame manner on the other fide, find the points $\mathrm{Q}, \mathrm{S}, \mathrm{W}, \& \varepsilon \mathrm{c}$. then thro' all thefe points $\mathrm{W}, \mathrm{S}, \mathrm{Q}, \mathrm{V}, \mathrm{E}, \mathrm{H}, \mathrm{K}, \& \mathrm{c}$. draw a regular curve, which will be an hyperbola reprefenting the circle given.

Take the tangent of the circle's diftance from its parallel great circle, and fet it from C (the center of projection) to V , and the fecant thereof from C to F. Then with the femi-tranfverfe $C V$, and focus F, defcribe the hyperbola WVHK.

> P R O P. XV. Prob.

To projeci any leffer oblique circle given. Rule.

Draw the line of meafures $d p$, and at C the
45. center of projection draw $\mathrm{CA}+$ to $d p$ and $=$ radius of projection ; with the center A, defcribe the circle DCFG; and draw RAE parallel to $d p$. Then take the greateft and leaft diftances of the circle from the pole of projection and fet from \mathbf{C}, to \mathbf{D} and F , for the circle DF ; and from A , the projecting point, draw $\mathrm{AF} f$, and $\mathrm{AD} d$, then $d f$ will be the tranfverfe axis of the ellipfis. But if D fall beyond the line RE, as at G, then draw a line from G backward thro' A to D , and then $d f$ is the tranfverfe of an hyperbola. But if the point D fall in the line $R E$ as at E, then the line $A E$ no where meets the line of meafures, and the projection of E is at an infinite diftance, and then the circle will be projected into a parabola whofe vertex is f. Laftly, bifect $d f$ in H the center, and for the ellipfis take half the difference of the lines $A d$, $\mathrm{A} f$, and fet from H to K for the focus. But for the hyperbola take half the fum of Ad, Af, and fet from H to the focus k of the hyperbola. Then with the tranfverfe $d f$ and focus K or k defcribe the ellipfis $d \mathrm{M} f$, or the hyperbola $f m$. For the projection of the circle given.

But for the parabola make $\mathrm{EQ}=\mathrm{F} f$, and draw $f n \perp \mathrm{AQ}$, and fet: $n \mathrm{Q}$ from f to K the focus. Then with

Otherwife by Points.

Thro' the center of projection C, draw the line 49. of meafures CF, paffing thro' the pole P (if P is given; but if not, find it, by fetting off $\mathrm{CP}=$ the diftance of that pole, from the center of projection, by Prop. XI.) then fet off PD, PF equal to the given diftance from its pole, by Prop. XI. Thro' ${ }_{P}$ draw a fufficient number of right lines, $L \lambda, M_{\mu}$, $\mathrm{N} n, \mathrm{O} 0, \mathrm{R} r, \mathrm{Ss}, \& \mathrm{c}$. which will all reprefent great circles. Find the dividing centers of each of thefe lines; and by Prop. XI. fet off upon each of them from P , the given diftance of the circle from it pole, as PL, $\mathrm{P} \lambda, \mathrm{PM}, \mathrm{P}_{\mu,}$ \& c . and thro' all the points $L, M, D, O, R, \& c$. draw a curve line, for the circle required.

Or tbus.

Draw the line of meafures PCG, and by Prop. 49 . XI. make CG $=$ the diftance of the parallel great circle from the pole of projection, and draw AGK perpendicular to it, which will reprefent a great circle whofe pole is P . Draw any number of right lines thro' P to AK , as $\mathrm{AP}, \mathrm{BP}, \mathrm{HP}, \& \mathrm{c}$. and by Prop. XI. fet off from AK the parts AL, BM, HO, $\& c \mathrm{c}$. each equal to the circle's diftance from its parallel great circle. Then all the points L, M, D, $O, \& c$. being joined by a regular curve, will reprefent the parallel circle required.

Or thus.
Thro' the center of projection C draw the line of 49 . meafures DCF, and the radius of projection CW perpendicular to it, and AGK +GC , for a great circle whofe pole is P . Draw $w p=W P$, and wa \perp to it, draw any number of right lines, AP, BP, $\mathrm{GP}, \& \mathrm{c}$. and make $p s, p b, p a, \& c .=\mathrm{PG}, \mathrm{PB}, \mathrm{PA}$,

D
\&c.

Fig. \&c. alfo make the $<p w l$ and $p w x=$ the circle's 49. diftance from its pole P (or awl $=$ the diftance from its parallel great circle); and upon $\mathrm{PG}, \mathrm{PB}, \mathrm{PA}$, $\& c$. make PD, PM, PL, \&c. $=p d, p m, p l, \& c$. refpectively.

Or make GD, BM, AL, \&rc. $=g d, b m, a l, \& c \mathrm{c}$. After the fame manner, find the points $\mathrm{O}, \mathrm{R}, \& \mathrm{c}$. and thro' all the points $\mathrm{R}, \mathrm{O}, \mathrm{D}, \mathrm{M}, \mathrm{L}, \& \mathrm{cc}$. draw a regular curve, making no angles, which will reprefent the parallel required. Likewife where any line $a p$ cuts rox, that diftance from p will give the point λ, or is $=P \lambda$; and fo of any other of the lines $b p, g p, \& c$.

The reafon of this procefs will be plain, if you fuppofe the points p, wapplied to P, W; and $g, b, a, \xi^{\mathcal{F}} c$. fucceffively to $\mathrm{G}, \mathrm{B}, \mathrm{A}, \& \mathrm{c}$. for then d, m, l, will fall upon D, M, L, \&c.

By the Scale.

45. Take the tangents of the circle's neareft and furtheft diftance from the pole of projection, and fet from C to f and d, gives the vertices, and bifect $d f$ in H ; then take half the difference, or half the fum, of the fecants of the greateft and leaft diftances from the pole of projection, and fet from H, to K or k for the focus of the ellipfis or hyperbola, which may then be defrribed.
49: Cor. If the curve be required to pafs thro' a givens point S; meafure PS by Prop. XI, and then the curve may be drawn by this Problem.

> P R O P. XVI. Prob.
47. To find the pole of any circle in the projeciion, DMF. Rule.
From the center of projection C, draw the radius of projection CA perpendicular to the line of meafures

Sect. III. OF THE SPHERE.
fures DF. And to A the projecting point, draw Fig. DA, FA, and bifect the angle DAF by the line AP, $47 \cdot$ then P is the pole. But if the curve be an hyperbola, as $f m$, fig. 45 , you muft produce $d \mathrm{~A}$, and bifect the angle $f A G$. And in a parabola, where the point d is at an infinite diftance, bifect the angle $f \mathrm{AE}$.

Or tbus; Drawing CA perpendicular to DC, draw DA, and make the angle DAP $=$ the circle's diftance from its pole, gives the pole P.

By the Scate.
Draw the radius of projection $\mathrm{CA} \perp$ to the line of meafures DF. Apply CD CF to the tangents, and fet the tangent of half the difference of their degrees from C to P , if D, F lye on contrary fides of C ; but half the fum if on the fame fide, gives P the pole.

Or thus; By Prop. XI. fet off from D to P, the circle's diftance from its pole, gives the pole P.

Cor. If it be a great circle as BG ; drawe the line 46. of meafures GC , end $\mathrm{CA}+$ to $i t$, and equal to the radius of projection; make GAP a rigbt angle, ani \mathbf{P} is the pole.

PROP. XVII. Prob.
To menfure any arch of a leffer circle; or to fet any number of degrees thereon.
Rule.

Let $\mathrm{F} n$ be the given circle. From the center of 46 . projection C, draw CA perpendicular to the line of meafures GH . To P the pole of the given cirde draw AP, and AO bifecting the angle CAP. And draw $A D$ perpendicular to AO. Defcribe the circle Gill (by Prop. XIII.) as far from the pole of projection C, as the given circle is from its pole P. And thro any given poine n in the circle $\mathrm{F} n$,

Fig. draw D $n l$, gives $\mathrm{H} l$ the number of degrees $=\mathrm{F} n$. 45. Or the degrees being given and fet from H to l, the line $\mathrm{D} l$ cuts off $\mathrm{F} n$ equal thereto.

Or thus; AO being drawn as before, erect OS perpendicular to CO ; thro' the given point n draw P_{n} cutting OS in Q , then thro' Q draw Cl , and the angle QCP is $=\mathrm{Fn}$. Or making $\mathrm{QCP}=$ the degrees given, draw $\mathrm{PQ} n$, and arch $\mathrm{F} n=$ thefe degrees.

Or tbus; AO, AP, being drawn as before, draw AG perpendicular to $A P$, and $G B$ perpendicular to GC. Thro' the given point n draw PB cutting GB in B , and draw OB , then the $<\mathrm{GOB}=$ arch Fn. Or making $<\mathrm{GOB}=$ the given degrees; draw $\mathbf{P B}$, and it cuts off $\mathrm{F} n=$ the degrees given.

By the Scale.

Let C be the center of projection, P the pole of the given circle. Apply CP to the tangents, and fet the tangent of its half from C to O , and the cotangent of its half from C to D ; with radius $\mathrm{CG}=$ tangent of the degrees in FP the given circle's diftance from its pole, defcribe the circle GSH. Then $\mathrm{D} l$ drawn thro n or l, cuts off $\mathrm{H} l=\mathrm{F} n$.

Or thus; O being found as before, erect OS perpendicular to CO; thro' the given point n draw $\mathrm{PQ} n$, and $\angle \mathrm{QCH}=\mathrm{F} n$.

Or thus; Apply CP to the tangents, and fet the co-tangent thereof from C to G . Erect GB perpendicular to GC. Thro' n draw PnB, and draw BO ; then $<\mathrm{GOB}=\mathrm{F} n$.
48. Cor. If the leffer circle be perpendicular to the plain of projection as VHK. You bave no more to do but to drave the perpendiculars VC, HG, to its parallel great circle CI. Then CG (meafured by Prop. XI.) coill be equal to VH ; or the degrees fot from C to G_{a} cuts off VH equal thereto.

S с нодium.

This fort of projection is little ufed, by reafon of 48 . feveral of the circles of the fphere fall in ellipfes and hyperbolas, which are very difficult to defcribe. Notwithftanding it is very convenient for folving fome Problems of the fphere, becaufe all the great circles are projected into right lines. And this fort, or the Gnomonic Projection is the very foundation of all dialling. For if the fphere be projected on any plane, and upon that fide of it on which the fun is to fhine; and the projected pole be made the center of the dial, and the axis of the globe the Stile or Gnomon, and the radius of projection its. height ; you will have a dial drawn with all its furniture. Upon this account it deferves to be more taken notice of, than at prefent it is. I have in the foregoing propofitions given, I think, all the fundamental principles of this kind of projection, having met with little or nothing done upon this fubject before.

GENERAL PROBLEM.

To project the fphere upon any given plane.

Before you can project the fphere upon any plane, you muft have a perfect knowledge of all its circles, and their pofitions in refpect of one another ; the diftances of the leffer circles from their poles, and from their parallel great circles; the angles made by great circles, or their inclinations, to oneanother, particularly to the primitive circle, on whofe plane (or a parallel thereto) you are about toproject the fphere. Then after the primitive circle is defcribed; you muft defcribe all other circles concerned in the Problem, according to the rules, of that fort of Projection, you are going to ufe;

D 3 and

Fig. and the interfection of thefe circles will determine the Problem.

And note, that the Projection of the concave fide of the fphere is more fit for aftronomical purpofes; for in looking at the heavens, we view the concavity. But it is better to project the convex hemifphere in geography, becaufe we fee the convex fide only.

The principal Points, Angles and Circles of the Spbere are as follows.

I. Points.

1. Zenith is the point over our heads, Z.
2. Nadir is the point under our feet, N.
3. Poles of the world are 2 points, round which the diurnal revolution is performed, P the north pole, p the fouth pole. A line drawn through the poles, is called the $A x i s$ of the world, as $\mathrm{P} p$.
4. Tbe Center of the earth or of the heavens, C.
5. Equinoztial Points, are the points of interfection of the Equator and Ecliptic, \uparrow, \bumpeq.
6. Solftitial Points, are the beginning of Cancer and Capricorn, , ws.
II. Great Circles.
I. Equinoctial, is a circle 90 degrees diftant from the poles of the world, as EQ .
7. Meridians, or bour Circles; are circles paffing thro' the poles of the world, as $\mathrm{P} \odot p, \mathrm{PE} p, \& c \mathrm{c}$.
8. Solfititial Colure, is a meridian paffing thro' the folftitial points, as $\mathrm{P}_{\mathrm{s} p}$.
9. Equino 8 tial Colure, is a meridian paffing thro' the equinoctial points, PC .
10. Ecliptic is the circle thro' which the fun feems to move in a year, Φw; it cuts the equinoctial at an angle of $23^{\circ} 30^{\prime}$, in paffing thro' the equinoctial points. In this are reckoned the 12 Sines, ir, γ,

11. $\mathrm{Ho}-$

12. Horizon, is a circle dividing the upper from Fig. the lower hemifphere, as HO , being 90° diftant 52. from the Zenith and Nadir.
13.
14. Vertical Circles, are circles paffing thro' the 55 . Zenith and Nadir, Z $\odot \mathbf{N}$.
15. Circles of Longitude in the heavens, pafs thro' the poles of the ecliptic and cut it at right angles.
16. Meridian of a Place, is that Meridian which paffes thro' the Zenith, as PZH.
17. Prime Vertical, is that which paffes thro' the eaft and weft points of the horizon.

III. Leffer circles.

1. Parallels of Latitude are parallel to the equinoctial on the earth, parallels of altitude are parallel to the horizon, parallels of declination are parallel. to the equinoctial in the heavens.
2. Tropics, are 2 circles diftant $23 .^{\circ} 30^{\prime}$ from the equinoctial, the tropic of Cancer towards the north, the tropic of Capricorn towards the fouth.
3. Polar Circles, are diftant $23^{\circ} 30^{\prime}$ from the poles of the world, the Arctic circle towards the north, the Antarctic towards the fouth.

IV. Angles and Arches of Circles.

1. Sun's (or Star's) Altitude, is an arch of the Azimuth between the fun and horizon, as $\odot \mathrm{B}$.
2. Amplitude is an arch of the horizon, between fun-rifing and the eaft, or fun-fetting and the weft.
3. Azimuth, is an arch of the horizon between the fun's Azimuth circle, and the north or fouth, as HB , or OB ; or it is the angle at the zenith, HZB or OZB.
4. Rigbt Afcenfion is an arch of the equator between the fun's meridian, and the firft point of Aries, as $\gamma \mathrm{K}$.
5. Afcenfional Difference is an arch of the equinostial, between the fun's meridian, and that point,

$$
\text { 1 } 4
$$

Fig. of the equinoctial that rifes with him, or it is the 52. angle at the polejbetween the fun's and the fix o'clock 53. meridian.
55. 6. Oblique Afcenfion or Defcenfion, is the fum or difference of the right afcenfion and the afcenfional difference.
7. Sun's Longitude, is an arch of the ecliptic, between the fun and firt part of Aries, as $\gamma \odot$.
8. Declination is an arch of the meridian, between the equinoctial and the fun, as $\odot \mathrm{K}$.
9. Latitude of a Star, is an arch of a circle of longitude between the ftar and ecliptic.
10. Latitude of a Plane, in an arch of the meridian between the equinoctial and the place.
11. Longitude of a place on the earth is an arch of the equinoctial, between the firt meridian (Ille of Ferro), and the meridian of the place. And diff. longitude, is an arch of the equator, between the meridians of the two places, or the angle at the pole.
12. Hour of the Day, is an arch of the equinoctial, between the meridian of the place and the fun's meridian, as EK; or it is the angle they make at the pole, as EPO.

> Example I.

To project the Sphere upon the plane of the meridian, for May 12, 1767. Latitude $54^{\circ} \frac{1}{2}$ north, at a quarter paft 9 o'clock before noon.

I. By the Ortbograpbic Projegion.

52. Here we will project the convex fide of the eaftern hemifphere. With the chord of 60° degrees defrribe the primitive circle or meridian of the place HZON. Thro' the center C draw the horizon HO; fet the latitude $54 \frac{1}{2}$ from O to P and from H to p, and draw P_{p} the 6 o'clock meridian. Thro' C draw $E Q$ perpendicular to $P p$ for the equinoctial. Make ED, Qd $18^{\circ} 5^{\prime}$ the declination May 12 , and draw Dd the fun's parallel for that day. By

Prop. XI. make $\odot G\left(3 \frac{7}{4}\right.$ hours or) $48^{\circ} 45^{\prime}$ the Fig. fun's diftance from the hour of 6 , then \odot is the 52 . fun's place. 'Thro' © by Prop. V. draw AL parallel to $\mathrm{H} \odot$ for the fun's parallel of altitude. By Prop. VII. draw the meridian $P \odot p$ and the azimuth $\mathbf{Z} \odot \mathbf{N}$. Alfo the ecliptic will be an ellipfis paffing thro' \odot, which cannot conveniently be drawn in this projection. Alfo draw the parallel $\mathrm{S} s 8^{\circ}$ below the horizon, and where it interfects $D d$ is the point of day break, if there is any. Now the fun is at d at 12 o'clock at night, and rifes at R, at 6 o'clock is at G, due eaft at F, at \odot a quarter paft 9 , and is at D in the meridian at 12 o'clock.
Draw GI parallel to HO. Then GR meafured by Prop. X. is $27^{\circ} 14^{\prime}$, and turned into time (allowing 15 degrees for an hour) fhows how long the fun rifes before 6 , to be $\mathbf{1}^{\mathrm{h}} 49^{\mathrm{m}}$; GI meafured by Prop. X . gives the azimuth at $6,79^{\circ} 16^{\prime}$. CR by Cor. Prop. X. gives the amplitude $32^{\circ} 19^{\prime}$, and CF gives his altitude when eaft $22^{\circ} 25^{\prime}$. FG $13^{\circ} 28^{\prime}$ (turned into time) is 54^{m}, and fhews how long after 6 he is due eaft. IO is his altitude at $6,14^{\circ} 38^{\prime}$. AH $41^{\circ} 53^{\prime}$ is his altitude at \odot, or a quarter paft 9 ; and $\odot \mathrm{L}$ meafured by Prop. X. is his azimuth from the north at the fame time, $122^{\circ} 40^{\prime}$. And thus the place of the moon or a ftar being given, it may be put into the projection, as at $*$. And its altitude, azimuth, amplitude, time of rifing, \&c. may all be found, as before for the fun.

II. Stereograpbically.

To project the fphere on the plane of the meri- 53. dian, the projecting point in the weftern point of the horizon; with cord of 60 , draw the primitive circle HZON, and thro' C draw HO for the horizon, and ZN perpendicular thereto for the prime vertical. Set the latitude from \mathbf{O} to P , and from H to p, and draw $P p$ the $6 o^{\prime}$ clock meridian, and draw DGd, the fun's parallel for the day. Draw the meridian $\mathrm{P} \odot p$ by Prop. XVIl. making an angle of $41^{\circ} 15^{\prime}$ with the primitive, to interfect the fun's parallel in \odot, the fun's place at $9^{\mathrm{h}} \frac{\mathrm{F}}{\mp}$. Thro' \bigcirc, by Prop. XII. draw the parallel of altitude A \odot L ; thro' \odot draw, by Prop. XVII. the azimuth $Z \odot N$. And by Prop. XII. draw the parallel Ssd $\mathrm{I}^{8 \circ}$ below the horizon, if it cut $\mathrm{R} d$, gives the point of day break. And thro' G draw the parallel of altitude GI. Laftly, by Prop. XX. thro' \odot draw the great circle $\gamma \odot \sim$ cutting the equinoctial EQ at an angle of $23^{\circ}: 30^{\prime}$, and this is the ecliptic, r the firtt point of Aries, and \approx that of Libra.

This done, $d \mathrm{R}$ meafured by Prop. XXIII. is 62° 46^{\prime}, fhows the time of fun rifing; CR by Prop. XXII. is the amplitude $32^{\circ} 19^{\prime}$. GI $79^{\circ} 16^{\prime}$ by Prop. XXIII. the fun's azimuth at 6 . IO $14^{\circ} 38^{\prime}$ his altitude at 6. $\mathrm{CF}_{22^{\circ}} 25^{\prime}$ by Prop. XXII. his altitude when eaft. GF $13^{\circ} 28^{\prime}$ the time when he is due eaft. © $\mathrm{B}_{4} 1^{\circ} 53^{\prime}$ by Prop. XXII. his altitude at a quarter paft 9 ; the $<\odot$ ZP $122^{\circ} 40^{\prime}$ by Prop. XXIV. his azimuth at that time. Alfo $\mathrm{r} \odot$, by Prop. XXII. is his longitude $51^{\circ} 7^{\prime} . ~ V K$ his right afcenfion, $48^{\circ} 40^{\prime}$.

And the place of the moon or a ftar being given, it may be put into the fcheme as at $*$; and its time of rifing, amplitude, azimuth, \&c. found as before.

III. Gnomonically.

54. To project the eaftern hemifphere upon a plane parallel to the meridian. About the center of projection C deficribe the circle HON with the tangent of 45 the radius of projection, for the primitive. 'Thro' C draw the horizon HO, and the prime ver-

Sect. III. OF THE SPHERE.
tical ZN perpendicular thereto. Set the latitude Fig. $54 \frac{1}{2}$ from H to a, and draw the 6 o'clock meri- 54 . dian $\mathrm{P} p$, and the equinoctial EQ perpendicular to it. Set the tangent of $48^{\circ} 45^{\prime}$ (equal to $3 \frac{1}{4}$ hours) from C to E , and by Prop. X. draw the meridian EL parallel to $\mathrm{P} p$. Make $\mathrm{E} e=\mathrm{E} a$, and $<\mathrm{E} e \odot$ $=18^{\circ} 5^{\prime}$ the fun's declination, then by Prop. XI. \odot is the fun's place. Thro' \odot draw the hyperbola $\mathrm{D} \odot d$ (by Prop. XIV.) for the fun's parallel of declination; and draw $\odot \mathrm{B}$ perpendicular to HO, for his azimuth circle. And draw GI perpendicular to HO, and RM, FT, $\| \mathrm{P} p$. Alfo the ecliptic is a right line paffing thro \odot, and cutting EQ at an angle of $23^{\circ} 30^{\prime}$, which is difficult to draw in this projection.

Alfo by Prop. XIV. Draw the parallel Ss 18° below the horizon, and if it interfects Dd, it gives the point of fun rife.

Then if by Prop. XVII. or XI. you meafure GR or rather CM, $27^{\circ} 14^{\prime}$, you have the time of fun rifing; GF or CT $13^{\circ} 28$, the time when he is due eaft. Alfo by Prop. XI. if you meafure CR you have the amplitude $32^{\circ} 19^{\prime}$. CI the comp. of his azimuth at fix, $10^{\circ} 44^{\prime}$. IG by Prop. XII. his altitude at $6,14^{\circ} 38^{\circ}$. CF his altitude when eaft, $22^{\circ} 25^{\prime}$. And by Prop. XI. \odot B $=41^{\circ} 53^{\prime}$, his altitude a quarter paft 9 . CB the complement of his azimuth at that time, $32^{\circ} 40^{\prime}$.

And the place of the moon or a ftar being given, its place in the projection may be determined as before, and all the requifites found.

Ex. 2.
To projeit the Sphere upon the plane of the folfi: tial colure for latitude $54 \frac{1}{2} N$. May 23, 1767, at 10 o'clock in the morning.

The projection of the weftern hemifphere, the firft point of Libra, the projecting point. Defrcribe the folftitial colure $\mathrm{PE} p \mathrm{Q}$, and the equinoctial colure $\mathrm{P} p$ perpendicular to it; and thro' C draw the equinoctial EQ perpendicular to $\mathrm{P} p$. Set $23^{\circ} 3^{\circ}$ from E to \leftrightarrows, and from Q to v, and draw the $e-$ cliptic os wo. Set the fun's longitude $61^{\circ} 42^{\prime}$ from C to \odot, and thro' \odot draw $\mathrm{P} \odot \mathrm{K} p$ for the 10 o'clock meridian. Make KA (two hours or) 30°, and draw PAp for the meridian of the place. Set the latitude of the place $54 \frac{1}{2}$ from A to Z, and Z is the zenith. About the pole \mathbf{Z} defcribe the great circle BHS for the horizon of the place. Thro' Z and \odot draw an azimuth circle $Z \odot$ B.

Then you have $\odot \mathrm{K}$ the fun's declination $20^{\circ} 33^{\prime}$. CK his right afcenfion $59^{\circ} 35^{\prime} . \odot \mathrm{B}$ his altitude at 100^{\prime} clock 49° 10'; the $<\mathrm{AZ}^{\circ} \odot$ or $\mathrm{PZ} \odot$ his azithuth at $10=\mathrm{HB}, 45^{\circ} 44^{\circ} . \mathrm{H}$ the fouth point of the horizon. I the point of the ecliptic that is in the meridian. T the point of the ecliptic that is fetting in the horizon.

$$
\text { Example. } 3 .
$$

To project the sphere on the plane of the borizon, Lat. $35^{\frac{1}{2}}, N$. fuly $^{31,1767 \text {, at } 10 \text { o'clock. }}$

Gnomonically.
To project the upper hemifphere on a plane parallel to the horizon. With the radius of projection and center C , defcribe the primitive circle ADB. Thro' C draw the meridian PE, and AS perpendicular to it for the prime vertical. Set off CP $35 \frac{1}{2}$ the latitude and P is the N. Pole, and perpendicular to CP draw $\mathrm{P} p$ the 6 o'clock meridian. Set the complement of the latitude from C to E ; and draw EQ perpendicular to CE for the equinoc-

Sect. III. OF THE SPHRRE.
equinoctial. Make EB 30° (or 2 hours) and draw Fig. the 100^{\prime} clock meridian PB. Set the fun's declina- 50 . tion $18^{\circ} 27^{\prime}$ from B to \odot. And \odot is the place of the fun at 10 o'clock. Thro' \odot draw the azimuth circle CQ ; likewife thro' \odot, a parallel to the equinoctial EQ may eafily be deferibed by Prop. XV. for the fun's parallel that day.

Then $\mathrm{C} \odot$ meafured by Prop. XI. is $31^{\circ} 30^{\prime}$ the complement of the altitude. And the angle EC© meafured by Cor. Prop. XII. is his azimuth, $65^{\circ} 10$.

Scholium.

After this manner may any Problems of the Sphere be folved by any of thefe Projections, or upon any planes, but upon fome more commodiounly than upon others. And if in à fpherical triangle any fides or angles be required, they may be projected according to what is given therein, according to any of thefe kinds of projection before delivered; and it will be moft eafily done, when you chufe fuch a plane to project on, that fome given fide may be in the primitive, or a given angle at the center; and then you need draw no more lines or circles than what are immediately concerned in that Problem. But always chufe fuch a plane to project on, where the lines and circles are reoft eafily drawn, and fo that none of them run out of the ficheme.

$$
\mathrm{F} \text { I N I S. }
$$

$$
\mathrm{E} \quad \mathrm{R} \quad \mathrm{R} A \mathrm{~A} \quad \mathrm{~T} .
$$

b fignifies reckon from the bottom.

THE
 L A W S
 0 F

Centripetal and Centrifugal Force.

> S HE W IN G,

The Motion of Bodies in Circular Orbits, and in the Conic Sections, and other Curves.

And explaining the perturbating Force of a third Body. With many other Things of like Nature.

Being a Work preparatory to Astronomy, and the very Bafis thereof. And abfolutely neceffary to be known by all fuch as defire to be Proficients in that Science.

Solis uti varios curfus, lunaque meatus Nofcere poffemus, que vis, $\mathcal{E}^{\text {c caufa cieret }}$

Lucret. Lib. V.
[1]

THE

P R E F A C E.

7 the following Treatife, I have explained and demonftrated the Laws of Centripetel Forces; a doctrine upon which all Aftronomy is grounded; and without the knowledge of which, no rational account can be giver of the motions of any of the celeftialbodies, as the Comets, the Planets, and their Satellites. From thefe laws are derived the caufes of the various feeming irregularities obferved in their motions; fuch as their accelerations and retardations, their approaching to, and receding from the center of force; irregularity, only in appearance; but in reality, thefe motions are truly regular and conformable to the eftablijhed laws of Nature. From this foundation we trace the way or path of all the planets, and difcover the origin and fpring of all the celeftial motions, and clearly underftand and account for all the phonomena thence arifng.

In the firt Section, you bave the Centripetal Forces of bodies revolving in circles; their velocities, periodic times, and diftances compared together; their relations and proportions to each other; and that when they either revolve about the fame center, or about different ones. The different motions caufed by different forces, or by different central attracting bodies, are bere bewn. We bave given likewife the periodic time of a fimple pendulum revolving with a conical motion; and alfo the center of Turbination, and the periodic time of a compound pendulum, or a fyltem of bodies, revolving with a conical motion; as properly belonging to the doctrine of Centripetal Forces.

In the fecond Section we have Jbewn the motion of bodies in the Ellipfis, Hyperbola, and Parabola; and in other Curves. The proportion of the Centripetal Forces, and velocities in different parts of the fame Curve. The law of Gentripetal Force to deforibe a given Curve, and the velo-

A 2
city
city in any point of it; and more particularly with refpect to that law of Centripetal Force that is reciprocally as the Square of the diftance; which is the grand law of Nature int regard to the action of bodies upon one another at a diftance; and according to this law, is fhewn the motion of bodies round one another, and round their common center of gravity, and the orbits they will deforibe.

In the third Section we have given the difturbing or perturbating force of a third body, acting upon two others that revolve round one another. From thefe principles are deduced the errors caufed in the motion of a Satellite, moving round its primary planet. Towards the end, are feveral propofitions, by means whereof, the motion of the Nodes, and variation of inclination of a Satellite's orbit, and fuch like things may be compuied. As thefe things are all laid down for the fake of underftanding our own Syfem, I bave inferted fome few things, by way of illuftration of the rules, in regard to the Moon and 7 upiter. But as to the Moon, there are fome things fo very intricate, and require fuch long and tedious calcuiatiors, as would require a volume of themfelves; fo that the fmall room I am confined to cannot admit of them; and few would trouble themfelves to read them, if they were there. This laft fection concludes with a few things of another kind, buit depending on the principles of Cientripetal Forces.

Several of thefe things about Centripetal Forces are calculated by the method of Fluxions; and cannot eafly be done any other way; and moft of them taken from my book of Fluxions. And Several other things relating to Centripetal Forces, you will alfo find in that book; being forry to trouble the reader too much with repeating what I have written and publijbed elfewhere.

[1]

THE

$$
\mathrm{L} \quad \mathrm{~A}_{\mathrm{OF}} \mathrm{~W} \quad \mathrm{~S}
$$

Centripetal and Certrifugal Force.

DEFINITIONS.

D E F. I.
THE center of attraction, is the point towards which any body is attracted or impelled.

D E F. II.

Centripetal force, is that force by which a body is impelled to a certain point, as a center. Here all the particles of the body are equally acted on by the force.

D E F.. III.
Centrifugal force, is the refiftance a moving body makes to prevent its being turned out of its direct courfe. This is oppofite and equal to the centripetal force; for action and re-action are equal and contrary.

D E F. IV.
Angular velocity, is the quantity of the angle a body defcribes in a given tume, about a certain point, as a center. Apparent velocity is the fame thing.

D EF. V.
Periodical time, is the time of revolution of a body round a center.

S E C T. I.

The motion of bodies in Circular Orbits.

PROP. I.

Fig. The centripetal forces, whereby equal bodies at equal diftances from the centers of force, are drazen towards thefe centers; are as the quantities of matter in the central bodies.

For fince all attraction is made towards bodies, every part of the attracting body muft contribute its fhare in that effect. Therefore a body twice as great will attract the fame body twice as much; and one thrice as great, thrice as much, and fo on. Therefore the attraction of the central body; that is, the centripetal force, is as the quantity of matter in the attracting or eentral body.

Cor. I. Any body whetber great or little, placed at the fame diftance, is attracied thro' equal fpaces in the fame time, by tbe central body.

For tho' a body twice or thrice as great as another, is drawn with twice or thrice the force; yet it will acquire no greater velocity, nor pafs thro' a greater fpace. For (Prop. V. Cor. 2. Mechan.) the velocity generated in a given time, is as the force directly, and quantity of matter reciprocally; and the force, which is the weight of the body, being as the quantity of matter; therefore the velocity generated is as the quantity of matter directly, and quantity of matter reciprocally, and therefore is a given quantity.

Cor.

Sect. I. CENTRIPETAL FORCES.

Cor. 2. Therefore the centripetal force, or force Fig. towards the center, is not to be meafured by the quantity of the falling body; but by the space it falls tbro' in a given time. And therefore it is fometimes called an accelerative force.

P R O P. II.

If a body revolves in a circle, and is retained in it, by a centripetal force, tending to the center of it; put $\mathrm{R}=$ radius of the circle or orbit defcribed, AC.
$\mathrm{F}=$ abfolute force, at the diftance R .
s = the fpace, a falling body could defcend tbro', by the force at A , and
t = time of the defcent.
$\pi=3.1416$.
T Then its periodic time, or the time of one revolution will be $\pi t \sqrt{ } \frac{2 \mathrm{R}}{s}$.

And the velocity, or $\int p a c e$ it defcribes in the time t, will be $\sqrt{2 \mathrm{Rs}}$.

For let $A B$ be a tangent to the circle at A; take $A F$ an infinitely fmall arch, and draw $F B$ perp. to $A B$, and $F D$ perp. to the radius AC. Let the body defcend thro' the infinitely fmall hight AD or $B F$, by the centripetal force in the time 1 . Now that the body may be kept in the circular orbit AFE, it ought to defcribe the arch AF in the fame time 1. The circumference of the circle AE is $2 \pi \mathrm{R}$, and the arch $\mathrm{AF}=\sqrt{2 \mathrm{R} \times \mathrm{AD}}$.

By the laws of falling bodies $\sqrt{ } s: t:: \sqrt{ } \mathrm{AD}:$
AD
$t \sqrt{\frac{A D}{s}}=$ time of moving thro' AD or AF. And by uniform motion, as $A F$, to the time of its defcription : : circumference AFEA, to the time of ${ }_{2 \pi} \mathrm{R}:$ periodic time $=\frac{2 t \pi \mathrm{R}}{\sqrt{2} \mathrm{R} s}=\pi t \sqrt{ } \frac{2 \mathrm{R}}{s}$.

Alfo by the laws of uniform motion, $t \sqrt{ } \frac{\mathrm{AD}}{s}$ or time of defcribing AF : AF or $\sqrt{2 \mathrm{R} \times \mathrm{AD}}:$: $t: \sqrt{2 \mathrm{R} s}=$ the velocity of the body, or fpace defcribed in time t.

Cor. 1. The velocity of the revolving body, is equal to that wobich a falling body acquires in defcending tbro' balf the radius AC, by the force at A uniformly continued.

For $\sqrt{ } s$ (hight) : $2 s$ (the velocity) : $: \sqrt{\frac{1}{2}} \mathrm{R}$ (the hight) : $\sqrt{2 \mathrm{Rs}}$, the velocity acquired by falling thro' $\frac{\pi}{2} \mathrm{R}$.

Cor. 2. Hence, if a body revolves uniformly in a circle, by means of a given centripetal force; the arch which it defcribes in any time, is a mean proportional between the diameter of the circle, and the space which the body would defcend tbro' in the Jame time, and with the fame given force.

For 2 R (diameter) $: \sqrt{2 \mathrm{R} s}:: \sqrt{2 \mathrm{Rs}}: s$; where $\sqrt{2 \mathrm{R} s}$ is the arch defcribed, and s the fpace defcended thro', in the time t.
2. Cor. 3. If a body revolves in any curve AFQ, about the center of forces; and if AC or R be the radius of curvature in any point $\mathrm{A} ; s=$ space defcended by the force directed to C . Then the velocity in A will be $\sqrt{2 \mathrm{Rs}}$.

For this is the velocity in the circle; and therefore in the curve, which coincides with it.

PROP.

PROP. III.

If feveral bodies revolve in circles round the fame \mathbf{I}. or different centers; the periodic times will be as the Square roots of the radii directly, and the Square roots of the centripetal forces reciprocally.

Let $F=$ centripetal force at A tending to the center C of the circle.
$\mathrm{V}=$ velocity of the body.
$\mathrm{R}=$ radius AC of the circle.
$\mathrm{P}=$ periodic time.
Then (Prop. II.) $\mathrm{P}=\pi t \sqrt{ } \frac{{ }^{2} \mathrm{R}}{s}$. But s is as the force F that generates it; whence $\mathrm{P}=\pi t \sqrt{ } \frac{2 \mathrm{R}}{\mathrm{F}}$, and fince $2, \pi$ and t are given quantities, therefore $P \propto V_{F}^{R}$.

Cor. I. The periodic times are as the radii diresily, and the velocities reciprocally.

For (Prop. II.) $\mathrm{V}=\sqrt{ } 2 \mathrm{R} s=\sqrt{2 \mathrm{RF}}$, and V^{2} $=2 \mathrm{RF}$, and $\mathrm{P}=\pi t \sqrt{ } \frac{2 \mathrm{R}}{\mathrm{F}}$, and $\mathrm{PP}=\pi^{2} t^{2} \times$ $\frac{2 \mathrm{R}}{\mathrm{F}}$, therefore $\mathrm{P}^{2} \mathrm{~V}^{2}=\pi^{2} t^{2} \times 4 \mathrm{R}^{2}$, and $\mathrm{P}^{2}=$ $\frac{\pi^{2} t^{2} \times 4 \mathrm{R}^{2}}{\mathrm{~V}^{2}}$, and $\mathrm{P}=\frac{\pi t \times 2 \mathrm{R}}{\mathrm{V}} \propto \frac{\mathrm{R}}{\mathrm{V}}$.

Cor. 2. The periodic times are as the velocities direcily, and the centripetal forces reciprocally.
For $\mathrm{V}^{2}={ }_{2} \mathrm{R} s=2 \mathrm{RF}$; and $\mathrm{R}=\frac{\mathrm{VV}}{2 \mathrm{~F}}$, and $\frac{\mathrm{R}}{\mathrm{V}}$ $=\frac{\mathrm{V}}{2 \mathrm{~F}} \propto \frac{\mathrm{~V}}{\mathrm{~F}}$. But (Cor. 1.) $\mathrm{P} \propto \frac{\mathrm{R}}{\overline{\mathrm{V}}} \propto \frac{\mathrm{V}}{\mathrm{F}}$.

Cor.

Fig. Cor. 3. If the periodic times are equal; the velo1. cities, and alfo the centripetal forces, will bc as the radit.

For if P be given; then $\frac{R}{F}$, and $\frac{R}{V}$, and \bar{F} are all given ratios.

Cor. 4. If the periodic times are as the fquare roots of the radii; the velocities will be as the Square roots of the radii, and the centripetal forces equal.

For (Prop. III. and Cor. 1.) putting $\sqrt{ } \mathrm{R}$ for P , we have $\sqrt{ } \mathrm{R} \propto \sqrt{ } \frac{R}{\mathrm{~F}} \propto \frac{\mathrm{R}}{\overline{\mathrm{V}}}$.Therefore $\mathrm{I} \propto \frac{\mathrm{I}}{\sqrt{ } \mathrm{F}} \propto$ $\frac{\sqrt{ } \mathrm{R}}{\mathrm{V}}$, and $\sqrt{ } \mathrm{R} \propto \mathrm{V}$, and $\sqrt{ } \mathrm{F}$ is a given quantity.

Cor. 5. If the periodic times are as the radii; the velocities will be equal, and the centripetal forces reciprocally as the radii.
For putting R for P, we have $R \propto \sqrt{ } \bar{R} \propto \frac{R}{\bar{V}}$; whence $\sqrt{ } R \propto \frac{1}{\sqrt{ } F}$, and $1 \propto \frac{1}{V}$; that is, R $\propto \frac{\mathrm{I}}{\mathrm{F}}$, or the centripetal force is reciprocally as the radius; and V is a given quantity.

Cor. 6. If the periodic times are in the fefquiplicate ratio of the radii; the velocities will be reciprocally as the Square roots of the radii, and the centripetal forces reciprocally as the fquares of the radii.
Put $R^{\frac{3}{2}}$ for P, then $R^{\frac{3}{2}} \propto \sqrt{ } \frac{R}{F} \propto \frac{R}{V}$; and $R \propto$ $\frac{\mathrm{I}}{\sqrt{ } \mathrm{F}}$ or $\mathrm{RR} \propto \frac{\mathrm{I}}{\mathrm{F}}$, and $\sqrt{ } \mathrm{R} \propto \frac{\mathrm{I}}{\mathrm{V}}$.

Cor. 7. If the periodic times be as the nth power of the radius; then the velocities will be reciprocally as the $n-1^{\text {th }}$ power of the radii, and the centripetal

Sect. I. CENTRIPETAL FORCES. forces reciprocally as the $2 n-1^{\text {th }}$ power of the Fig. radii.

Put R^{n} for P , then $\mathrm{R}^{n} \propto \sqrt{\mathrm{R}} \propto \frac{\mathrm{R}}{\overline{\mathrm{V}}}$. Whence $\mathrm{R}^{2 n} \propto \frac{\mathrm{R}}{\mathrm{F}}$, and $\mathrm{R}^{2 n-1} \propto \frac{\mathrm{I}}{\mathrm{F}}$. Alfo $\mathrm{R}^{n-1} \propto \frac{\mathrm{I}}{\mathrm{V}}$. P K O P. IV.

If feveral bodies revolve in circles round the fame i. or different centers; the velocities are as the radii direEtly, and periodic times reciprocally.

For putting the fame letters as in Prop. III. we have (by Prop. II.) $V=\sqrt{2 R s}=\sqrt{2 R F}$; and P $\propto \frac{\mathrm{V}}{\mathrm{F}}$ (by Cor. 2. Pr. III.), and PF $\propto \mathrm{V}$, and $\mathrm{F} \propto$ $\frac{V}{P} . \quad$ Whence $V=\sqrt{ } 2 R F=\sqrt{2 R \times \frac{V}{P}}$, and V^{2} $=\frac{2 R V}{P}$, and $V=\frac{2 R}{P} \propto \frac{R}{P}$.

Cor. I. The velocities are as the periodical times, and the centripetal forces.

For we had PF $\propto \mathrm{V}$.
Cor 2. The fquares of the velocities are as the radii and the centripetal forces.

For $\mathrm{V}=\sqrt{2 \mathrm{ikF}}$.
Cor. 3. If the velocities are equal; the periodic times are as the radii, and the radii reciprocally as the centripetal forces.

For if V be given, its equal $\frac{\mathrm{R}}{\mathrm{P}}$ is a given ratio; and $\sqrt{ } R F$ is given, whence $R \propto \frac{1}{F}$.

$$
\text { B } 4
$$

Cor,

Fig. Cor. 4. If the velocities be as the radii, the perio1. dic times will be the fame; and the centripetal forces as the radii.

For then V or $R \propto \frac{R}{P}$, and $\mathrm{I} \propto \frac{\mathrm{I}}{\mathrm{P}}$. Alfo $R=$ $\sqrt{2 \mathrm{RF}}$, whence $\mathrm{R} \propto \mathrm{F}$.

Cor. 5. If the velocities be reciprocally as the radii; the centripetal forces are reciprocally as the cubes of the radii; and the periodic times as the Squares of the radii.

For put $\frac{1}{R}$ for V, then (Cor. 2.) $\frac{1}{R}=\sqrt{2 R F}$, $\frac{I}{R R}={ }_{2} R F$, whence $F \propto \frac{I}{R^{3}}$. Alfo $\frac{I}{R} \propto_{P}^{R}$, and $\mathrm{P} \propto \mathrm{RR}$.
PROP. V.

1. If feveral bodies revolve in circles about the fame or different centers; the centripetal forces are as the radii direotly, and the Squares of the feriodic times reciprocally.

Put the fame letters as in Prop. III. Then (Prop. II.) $\mathrm{P}=\pi t \sqrt{ } \frac{2 \mathrm{R}}{s}=\pi t \sqrt{ } \frac{2 \mathrm{R}}{\mathrm{F}}$, and $\mathrm{PP}=\pi \pi t t$ 2R
X_{F}^{2}, and $\mathrm{PPF}=2 \pi \pi t t \mathrm{R}$; whence $\mathrm{F}=\frac{2 \pi \pi t t \mathrm{R}}{\mathrm{PP}}$
$\propto \frac{R}{P P}$.
Cor. I. The centripetal forces are as the velocities directly, and the periodic times reciprocally.
For (Prop. IV.) $V \propto \frac{R}{P}$, and $F \propto \frac{R}{P P} \propto \frac{V}{P}$.
Cor. 2. The centripetal forces, are as the fquares of the velocities directily, and the radii reciprocally.

Sect. I. CENTRIPETAL FORCES.
For (Cor. 1.) $\mathrm{F} \propto \frac{\mathrm{V}}{\mathrm{P}}$, and $\mathrm{FP} \propto \mathrm{V}$. But (Prop. Fig. III. Cor. 1.) $P \propto \frac{\mathrm{R}}{\mathrm{V}}$, therefore $\mathrm{FP} \propto \frac{\mathrm{FR}}{\mathrm{V}}$, therefore $\frac{\mathrm{FR}}{\mathrm{V}} \propto \mathrm{V}$, and $\mathrm{F} \propto \frac{\mathrm{VV}}{\mathrm{R}}$.

Cor. 3. If the centripetal forces are equal; the velocities are as the periodic times; and the radii as the Squares of the periodic times, or as the Squares of the velocities.

Cor. 4. If the centripetal forces be as the radii, the periodic times will be equal.

For $F \propto \frac{R}{P P}$, and $\frac{F}{K} \propto \frac{1}{P P}$, and if $\frac{F}{R}$ be a given ratio, $\frac{1}{\mathrm{PP}}$ will be given, as alfo P .

Cor. 5. If the centripetal forces be reciprocally as the Squares of the diftances; the fquares of the periodical times will be as the cubes of the diftances; and the velocities reciprocally as the fquare roots of the diftances.

For writing $\frac{I}{R R}$ for F, then $\frac{I}{R R} \propto \frac{R}{P P}$, and $\frac{R^{3}}{P^{2}}$ a given quantity. And $\frac{I}{R R} \propto \frac{V V}{R}$, and $\frac{1}{R} \propto$ VV , or $\sqrt{ } \frac{\mathrm{I}}{\mathrm{R}} \propto \mathrm{V}$.

PROP. VI.
If feveral bodies revolve in circles, about the fame \mathbf{x}. or different centers; the radii are direEily as the centripetal forces, and the fquares of the periodic times.

For (Prop. II.) putting the fame letters as before, $\mathrm{P}=\pi t \sqrt{ } \frac{2 \mathrm{R}}{s}=\pi t \sqrt{ } \frac{2 \mathrm{R}}{\mathrm{F}}$, and $\mathrm{PP}=\pi \pi t t$ $\times \frac{2 R}{F}$, and $\operatorname{PPF}=2 \pi \pi t t \mathrm{R} \propto R$.

Cor.

10 CENTRIPETAL FORCES.

Fig. Cor. I. The radii are directly as the velocities and 1. periodic times.

For (Prop. IV. Cor. I.) PF $\propto V$, but PPF \propto R; therefore $P V \propto R$.

Cor. 2. The radii are as the fquares of the velocities direcily, and the centripetal forces reciprocally.

For (Prop. III. Cor. 2.) $P \propto \frac{V}{F}$, but (Cor. 1.) $R \propto P V$; therefore $R \propto \frac{V V}{F}$.

Cor. 3. If the radii are equal; the centripetal forces are as the fquares of the velocities, and reciprocally as the Jquares of the periodic times. And the velocities reciprocallly as the periodic times.

For if R be given, $\frac{V V}{F}$, and $P P F$, and $P V$, are given quantities, and $F \propto V V$, or $F \propto \frac{1}{P P}$, and $V \propto \frac{1}{\vec{P}}$.

Scholium.

The converfe of all thefe propofitions and corollaries are equally true. And what is demonftrated of centripetal forces, is equally true of centrifugal forces, they being equal and contrary.
P R O P. VII.

1. The quantities of matter in all attracking bodies, baving others revolving about them in circles; are as the cubes of the diftances directly, and the fquares of the periodical times reciprocally.

Let M be the quantity of matter in any central attracting body. Then fince it appears, from all aftronomical obfervations, that the fquares of the periodical times are as the cubes of the diftances, of the planets, and fatellites from their refpective centers.

Sect. I. CENTRIPETAL FORCES.
centers. Therefore (Cor. 6. Prop. III.) the centri- Fig. petal forces will be reciprocally as the fquares of the \boldsymbol{x}. diftances; that is, $\mathrm{F} \propto \frac{\mathrm{I}}{\mathrm{RR}}$. And (Prop. I.) the attractive force at a given diftance, is as the body M, therefore the abfolute force of the body M is as $\frac{M}{R R}$. And (Prop. V.) fince $F \propto \frac{R}{P P}$, put $\frac{M}{R R}$ inftead of F, and we have $\frac{M}{R R} \propto \frac{R}{P P}$, and $M \propto \frac{\mathrm{R}^{3}}{\mathrm{P}^{2}}$.

Cor. 1. Hence inftead of F in any of the foregoing propofitions and their corollaries, one may fubfitute $\frac{\mathrm{M}}{\mathrm{RR}}$, which is the force that the attracting body in C , exerts at A.

Cor. 2. The attraEtive force of any body, is as the quantity of matter directly, and the fquare of the difance reciprocally.
PROR. VIII.

If the centripetal force be as the diftance from the center C. A body let fall from any point A, will fall to the center in the fame time, that a body revolving in the circular orbit ALEA, at the difince CA, would defcribe the quadrant AGL.

The truth of this is very readily fhewn by fluxions; thus, put $\mathrm{AC}=r, \mathrm{AH}=x, t=$ time of defcribing $\mathrm{AH}, v=$ the velocity at $\mathrm{H} . \mathrm{F}=$ force at H , which is as CH or $\overline{r-x}$. Then (Mechan. Cor. 2. Prop. V.) the velocity generated is as the force and time; that is, $\dot{v} \propto \bar{t}$. Alfo (Mechan. Prop. III. Cor. 1.) the time is as the face divided by the veloci- CENTRIPETAL FORCES: Fig. 3. ty $;$ that is, $\dot{t} \propto \frac{\dot{x}}{v}$; therefore $v \propto \frac{F \dot{x}}{v} \propto \frac{\overline{r-x} \times \dot{x}}{v}$, and $v \dot{v} \propto \overline{r-x} \times \dot{x}$, and the fluent is $\frac{v v}{2} \propto r x-$ $x x$ $\overline{2}$, or $v v \propto 2 r x-x x$, and $v \propto \sqrt{2 r x-x x}$ or HG; that is, the velocity at H is as the ordinate HG of the circle.

Now it is evident, that in the time the revolving body defrribes the infinitely fmall arch AF , the falling body will defcend thro' the verfed fine AD, and would defcribe twice $A D$ in the fame time, with the velocity in D. Therefore we fhall have, velocity at F : velocity at $\mathrm{D}:$: AF or $\mathrm{FD}: 2 \mathrm{AD}$, and velocity at $\mathrm{D}:$ velocity at $\mathrm{H}:: \mathrm{AF}$ or $\mathrm{FD}: \mathrm{GH}$, therefore,
velocity at F or G : velocity at $\mathrm{H}:: \mathrm{AF}^{2}: 2 \mathrm{AD} \times$ $\mathrm{GH}:: \frac{\mathrm{AF}^{2}}{2 \mathrm{AD}}: \mathrm{GH}:$: CA or CG : GH. But drawing an ordinate infinitely near GH; by the nature of the circle, it will be, as GC : GH: : fo the increment of the curve AG : to the increment of the axis AH. And therefore, vel. at G: vel. at $\mathrm{H}::$ as the increment of AG: to the increment of AH. Therefore fince the velocities are as the fpaces defcribed, the times of defcription will be equal; and the feveral parts of the arch AGL are defcribed in the fame times as the correfpondent parts of the radius AHC. And by compofition, the arch $A G$ and abfciffa $A H$, as alfo the quadrant $A L$ and radius $A C$, are defrribed in equal times.
Cor. I. The velocity of the defiending body at any place H , is as the fine GH .

Cor. 2. And the time of defcending thro' any verred fine AH, is as tbe correfponding arch AG.

Sect. I. CENTRIPETAL FORCES.

Cor. 3. All the times of falling from any altitudes Fig. whatever, to the center C , will be equal.
3.

For there times are $\frac{1}{4}$ the periodic times; and (Prop. V. Cor, 4.) there periodic times are all equal.

Cor. 4. In the time of one revolution, the falling body will have moved tho' C to E , and back again tbro' C to A , meeting the revolving body again at A .

Cor. 5. The velocity of the falling body at the center C , is equal to the velocity of the revolving body.

For the velocities are as the lines GH and GC; and thee are equal, when G comes to L.

PR O P. IX.

If a pendulum AB be fufpended at A , and be made 4. to revolve by a conical motion, and describe the circle BEDH parallel to the horizon.

Put $\pi=3.1416 ; p=16 \frac{1}{T_{2}}$ feet, the space defended by gravity in the time t.

Then the periodical time of B will be $\pi t \sqrt{ } \frac{2 \mathrm{AC}}{p}$.
For (Mechan. Prop. VIII.) if the axis AC reprefents the weight of the body, AB will be the force ftretching the ftring, and BC the force tending to the center C. Alfo (Mechan. Prop. VI.) if the time is given, the face defcribed will be as the force; whence $\mathrm{AC}: \mathrm{BC}:: p:: \frac{\mathrm{BC}}{\mathrm{AC}} p=$ the face defended towards C , by the force BC , in the time t. This is the face s in Prop. II. Therefore instead of s put its value in the periodical time, and (by Prop.II.) we fall have the periodical time of the pendulum $=\pi t \sqrt{ } \frac{2 \mathrm{R}}{s}=\pi t \sqrt{{ }_{2} \mathrm{BC} \times \frac{\mathrm{AC}}{\mathrm{BC} \times p}}$ $=\pi t \sqrt{ } \frac{2 \mathrm{AC}}{\mathrm{P}}$.

Fig. Cor. I. In all pendulums, the periodic times are as 4. the fquare roots of the bights of the cones, AC.

For π, t, and p are given quantities.
Cor. 2. If the bigbts of the cones be the fame, the periodic times will be the fame, whatever be the radius of the baje BC.

Cor. 3. The femiperiodic time of revolution, is equal to the time of ofcillation of a perdulum, wobose length is AC, the bight of the cone.

For by the laws of falling bodies, $t \sqrt{ } \frac{A C}{2 p}=$ time of falling thro' $\frac{1}{2} A C$; and therefore (Mechan. Prop. XXIV.) i $: \pi: t t \sqrt{ } \frac{A C}{2 p}: \pi t \sqrt{ } \frac{A C}{2 p}$ $=\frac{\mathrm{r}}{2} \pi t \sqrt{ } \frac{2 \mathrm{AC}}{p}$, the time of vibration, which is half the periodical time.

Cor. 4. The fpace defended by a falling body, in the time of one revolution, will be $\pi \pi \times 2 \mathrm{AC}$.
For $t t$ (time) : p (hight) : : $\pi \pi t t \times \frac{2 \mathrm{AC}}{p}$ (per. time) : $\pi \pi \times{ }_{2} \mathrm{AC}=$ hight defcended in that time.

Cor. 5. The periodic time, or time of one revolution, is equal to $\pi \sqrt{2} \times$ time of falling tbro $A C$.

For the time of falling thro' $A C$ is $t \sqrt{ } \frac{A C}{p}$.
Cor. 6. The weight of the pendulum is to the centrifugal force; as the bight of the cone AC , to the radius of the bafe CB. And therefore when the bight CA is equal to the radius CB ; the centripetal or centrifugal force is equal to the gravity.

> PROP.

Sect. I. CENTRIPETAL FORCES.
P R O P. X.

Fig.
Suppofe a fyftem of bodies A, B, C, to revolve $5 \cdot$ with a conical motion about the axis TR perp. to the borizon, fo as to keep the fame fide always towards the axis of revolution, and the fame pofition among themfelves.

To find the periodical time of the whole fyftem.

1. Let A, B, C be all fituated in one plane paffing thro' TR. From A, B, C let fall the perpendiculais $\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c$, upon the axis TR. And let A, B, C reprefent the quantities of matter in the bodies A, B, C. Alfo put $b=16 \frac{1}{1_{2}}$ feet, the hight a body falls in the time t by gravity ; π $=3.1416 ; \mathrm{P}=$ the periodic time of the fyftem.

By the refolution of forces, $\mathrm{T} a$ (gravity): $\mathrm{A} a$ (force in direction $\mathrm{A} a$) : : $b: \frac{\mathrm{Aa}}{\mathrm{T} a} b=$ fpace defcended by A towards a in the time r , which is as the velocity generated by the force $A a$. Therefore $\frac{\mathrm{A} a}{\mathrm{~T} a} b \mathrm{~A}=$ motion generated in A in direction Aa. And the force in direction $A a$ to move the fyftem towards TR, by the power of the lever TA, is $\frac{\mathrm{A} a}{\mathrm{~T} a} b \mathrm{~A} \times \mathrm{T} a$ or $\mathrm{A} a \times b \mathrm{~A}$. This is the centripetal force of the fyltem, arifing from the gravity of A . In like manner the centripetal forces arifing from B and C , will be $\mathrm{B} b \times b \mathrm{~B}$ and $\mathrm{C} c \times b \mathrm{C}$.

By the laws of uniform motion, $\mathrm{P}: 2 \pi \times \mathrm{Aa}:$: $t: \frac{2 \pi t \times \mathrm{A} a}{\mathrm{P}}=$ arch defcribed by A in the time t. And $\frac{4 \pi \pi t t \times \mathrm{A} a^{2}}{\mathrm{PP} \times \frac{2 \pi \pi t t}{2 \mathrm{~A} a} \text { or } \frac{\mathrm{A} a}{\mathrm{PP}}=\text { diftance it }}$ is drawn from the tangent in that time, or as the velocity generated; and therefore $\frac{2 \pi \pi t t}{P} \times A a x A$

Fig. = motion of A tending from the center a, by the 5. revolution of the fyftem. And the force in direction $a \mathrm{~A}$, to move the fyftem from TR, by the power of the lever TA, will be $\frac{2 \pi \pi t t \times \mathrm{A} a}{\mathrm{PP}} \mathrm{A} \times$ Ta. And this is the centrifugal force of the fyftem arifing from the revolution of A. And in like manner the centrifugal forces arifing from \mathbf{B} and C , will be $\frac{2 \pi \pi t t \times \mathrm{B} b}{\mathrm{PP}} \mathrm{B} \times \mathrm{T} b$, and $\frac{2 \pi \pi t t \times \mathrm{C} c}{\mathrm{P} P} \mathrm{C}$ $\times \mathrm{T}$. .

But becaufe the whole fyftem always keeps at the fame diftance from the axis TF, in its revolution; therefore the fum of all the centripetal forces muft be equal to the fum of all the centrifugal forces. Whence $\mathrm{A} a \times b \mathrm{~A}=\mathrm{B} b \times b \mathrm{~B}+\mathrm{C} c \times b \mathrm{C}=$ $\frac{2 \pi \pi t t}{\mathrm{PP}} \times$ into $\mathrm{A} a \times \mathrm{T} a \times \mathrm{A}+\mathrm{B} b \times \mathrm{T} b \times \mathrm{B}+\mathrm{C} c$ $\times \mathrm{T} c \times \mathrm{C}$. And confequently $\mathrm{P}=\pi t \sqrt{ } \frac{2}{b} \times$ $\mathrm{A} a \times \mathrm{T} a \times \mathrm{A}+\mathrm{B} b \times \mathrm{T} b \times \mathrm{B}+\mathrm{C} c \times \mathrm{T} c \times \mathrm{C}$. $\mathrm{A} a \times \mathrm{A}+\mathrm{B} b \times \mathrm{B}+\mathrm{C} c \times \mathrm{C}$
2. If the bodies are not all in one plane, let N be the center of gravity of the bodies A, B, C. And thro' N draw the plane TNR; and from all the bodies, let fall perpendiculars upon that plane. Then the periodic time will be the fame as if all the bodies were placed in thefe points where the perpendiculars cut the plane. For if m be one of the bodies, and $m \mathrm{C}$ perp. to the plane. Then the centripetal and centrifugal forces of m in direction $c m$, will be $c m \times b m$ and $\frac{2 \pi \pi t t \times \mathrm{T} c}{\mathrm{PP}} m \times m c$. But the force $c m$ is divided into the two forces $c \mathrm{C}, \mathrm{Cm}$. And all the forces $\mathrm{C} m$ deftroy one another, becaufe the plane, TN c, paffes thro' their center of gravity. Therefore the plane is only acted on by the

Sect. I. CENTRIPETAL FORCES. the remaining force $c \mathrm{C}$. So that the centripetal Fig. and centrifugal forces will be the fame as before, 5 . when the body was placed in C ; and the periodic time is the fame.

Cor. I. If $\mathrm{N} n$ be drawn from the center of gravity perp. to TF; then the periodic time of the fiv. tem, $\mathrm{P}=\pi t \sqrt{ } \frac{2}{b} \times$
$\mathrm{T} a \times \mathrm{A} a \times \mathrm{A}+\mathrm{T} b \times \mathrm{B} b \times \mathrm{B}+\mathrm{T} c \times \mathrm{C} c \times \mathrm{C}$
$\mathrm{N} n \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}$
For (Mechan. Prop. XXXV.) $A a \times A+B b \times$ $\mathrm{B}+\mathrm{C} c \times \mathrm{C}=\mathrm{N} n \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}$.

Cor. 2. The length of a fimple pendulum, making trwo vibrations, or an excceding fmall conical motion, in the fame periodic time, will be
$\mathrm{T} a \times \mathrm{A} a \times \mathrm{A}^{\prime}+\mathrm{T} b \times \mathrm{B} b \times \mathrm{B}+\mathrm{T} c \times \mathrm{C} c \times \mathrm{C}$

$$
\mathrm{N} n \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}
$$

For let TO be the hight of the cone defcribed by the pendulum ; then (Prop. IX.) PP $=\frac{2 \pi \pi t t}{b} x$ TO ; therefore $\mathrm{TO}=$ $\mathrm{T} a \times \mathrm{A} a \times \mathrm{A}+\mathrm{T} b \times \mathrm{B} b \times \mathrm{B}+\mathrm{T} c \times \mathrm{C} c \times \mathrm{C}$ $\mathrm{N} n \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}$
Cor. 3. If TO be the length of an ifocronal pendulum, then O is the center of gravity of all the peripheries defcribed by $\mathrm{A}, \mathrm{B}, \mathrm{C}$; each multiplied by the body; whether A, B, C be the places of the bodies, or the points of projection upon the plane TNR.

For if $\mathrm{A} a \times \mathrm{A}, \mathrm{B} \dot{b} \times \mathrm{B}, \mathrm{C} c \times C$ be taken for bodies, their center of gravity will be diftant from T , the length
$\frac{\mathrm{T} a \times \mathrm{A} a \times \mathrm{A}+\mathrm{T} b \times \mathrm{B} b \times \mathrm{B}+\mathrm{T} c \times \mathrm{C} c \times \mathrm{C}}{\mathrm{A} a \times \mathrm{A}+\mathrm{B} b \times \mathrm{B}+\mathrm{C} \times \mathrm{C} \times-}$

18 CENTRIPETAL FORCES.

Fig. chan. Prop. XXXV.) which is equal to TO by 5. Cor. 2. and the peripheries are as the radii, $\mathrm{A} a, \mathrm{~B} b$, C.

Cor. 4. If any of the bodies be on the contrary fide of the axis TR, or above the point of fufpenfion T ; tbat diftance muft be negative.
Cor. 5. If any line or plane figure be placed in the plane TNR; then the point O, wibich gives the length of the pendulum, will be the center of gravity, of the furface or folid, deforibed in its revolution.

Scholium.
The point O which gives the length of the ifocronal pendulum; is called the center of turbination or revolution. And the plane TNR paffing thro' the center of gravity, the turbinating plane.

[19]

S E C T. II.

The motion of bodies in all forts of Curve Lines.

PR O P. XI.

$\mathcal{T} H E$ areas, which a revolving body defcribes by Fig. radii drawn to a fixed center of force, are propor- 6. tional to the times of defcription; and are all in the fame immoveable plane.

Let S be the center of force; and let the time be divided into very fmall equal parts. In the firlt part of time let the body defcribe the line $A B$; then if nothing hindered, it would defcribe $\mathrm{BK}=$ $A B$, in the fecond part of time; and then the area $\mathrm{ASB}=\mathrm{BSK}$. But in the point B let the centripetal force act by a fingle but ftrong impulfe, and caufe the body to defcribe the line BC. Draw KC parallel to $S B$, and compleat the parallelogram BKCr , then the triangle $\mathrm{SBC}=\mathrm{SBK}$, being between the fame parallels; therefore $S B C=S B A$, and in the fame plane. Alfo the body moving uniformly, would in another part of time defcribe C m $=\mathrm{CB}$; but at C , at the end of the fecond part of time, let it be acted on, by another impulfe and carried along the line CD ; draw $m \mathrm{D}$ parallel to CS , and D will be the place of the body after the third part of time; and the triangle $S C D=S C m$ $=S C B$, and all in the fame plane. After the fame manner let the force act fucceffively at D , $\mathrm{E}, \mathrm{F}, \& \mathrm{c}$. And making $\mathrm{D} n=\mathrm{DC}$, and $\mathrm{E}_{0}=$ ED, \&c. and compleating the parallelograms as C 2 before;

CENTRIPETAL FORCES.

Fig before; the triangle $\mathrm{CS} m=\mathrm{CSD}=\mathrm{DS} n=\mathrm{DSE}$ 6. $=\mathrm{ES}$ o $=\mathrm{ESF}, \& \mathrm{c}$. and all in the fame immoveable plane. Therefore in equal times equal areas are defcribed; and by compounding, the fum of all the areas is as the time of defcription. Now let the number of triangles be increafed, and their breadth diminifhed ad infinitum; and the centripetal force will act continually, and the figure ABCDEF, \&c. will become a curve; and the areas will be proportional to the times of defcription.
Cor. I. If a body defcribes areas proportional to the times, about any point; ; it is urged towards that point by the centripetal force.
For a body cannot defcribe areas proportional to the times, about two different points or centers, in the fame plane.

Cor. 2. The velocity of a body revolving in a curve, is reciprocally as the perpendicular to the tangent, in that point of the curve.

For the area of any of thefe little triangles being given; the bafe (which reprefents the velocity) is reciprocally as the perpendicular.
7. Cor. 3. The angular velocity at the center of force, is reciprocally as the Square of its diftance from tbat center.
For if the fmall triangles CSD and SBA be equal, they are defcribed in equal times. The area $\mathrm{CSD}=\frac{\mathrm{SC} \times \mathrm{CQ}}{2}$, and area $\mathrm{SBA}=\frac{\mathrm{SB} \times \mathrm{BP}}{2}$; therefore $\mathrm{SC} \times \mathrm{CQ}=\mathrm{SB} \times \mathrm{BP}$. But the angle CSD : angle ASB :: CQ: $c q:: S C \times C Q: S C \times$ $c q:: S B \times B P: S C \times c q::$ area $S B A:$ area $S c q::$ $\mathrm{SB}^{2}: \mathrm{Sc}^{2}$ or SC^{2}.

PROP.

PROP. XII.

If a body revolving in any curve VIL, be urged by a centripetal force tending towards the center S; the centripetal force in any point I of the curve will be as
$\frac{\dot{p}}{\dot{p}}$; where $p=$ perpendicular SP on the tangent at $p^{3} d$
I , and $d=$ the difance SI.
For take the point K infinitely near I , and draw the lines SI, SK; and the tangents $\mathrm{IP}, \mathrm{K} f$; and the perpendiculars $\mathrm{SP}, \mathrm{S} f$. Alfo draw $\mathrm{K} m, \mathrm{~K} n$ parallel to SP, SI, and KN perp. to SI.

The triangles ISP, IKN. $n \mathrm{~K} m$, are fimilar; as alfo $\mathrm{IK} m$, IP q. Therefore $\mathrm{I} q$ or IP:IK :: $q \mathrm{P}$: $\mathrm{K} m$. And PS:IP : : K $m: m n$. And IN $: \mathrm{IK}:$: $m n: n \mathrm{~K}$. And multiplying the terms of thefe three proportions, IP \times PS \times IN : IK \times IP $\times I K::$ $q \mathrm{P} \times \mathrm{K} m \times m n: \mathrm{K} m \times m n \times n \mathrm{~K}$. That is, $\mathrm{PS} \times$ IN : IK: : : $q \mathrm{P}: n \mathrm{~K}=\frac{\mathrm{P} q \times \mathrm{IK}^{2}}{\mathrm{PS} \times \mathrm{IN}}$. But (Mechan. Prop. VI.) the fpace $n \mathrm{~K}$, thro' which the body is drawn from the tangent, is as the force and fquare of the time ; that is (Prop. XI.) as the force and fquare of the area ISK, or as the force $\times \mathrm{SI}^{2} \times$ KN^{2}, or becaufe $\mathrm{SI} \times \mathrm{KN}=\mathrm{t}$ wice the triangle ISK $=\mathrm{IK} \times$ SP; therefore $n \mathrm{~K}$ is as the force \times $\mathrm{IK}^{2} \times \mathrm{PS}^{2}$. Therefore the force at I is as $\frac{n \mathrm{~K}}{\mathrm{IK}^{2} \times \mathrm{PS}^{2}}=\frac{\mathrm{Pq} \times \mathrm{IK}^{2}}{\mathrm{PS} \times \mathrm{IN} \times \mathrm{IK}^{2} \times \mathrm{PS}^{2}}=\frac{\mathrm{Pq}}{\mathrm{PS}^{3} \times \mathrm{IN}}=$ \dot{p}.
$p^{3} d$
Cor. I. T'be centripetal force at I is as $\frac{n \mathrm{~K}}{\mathrm{SI}^{2} \times \mathrm{KN}^{2}}$, or as $\frac{n \mathrm{~K}}{\mathrm{SP}^{2} \times \overline{\mathrm{IK}^{2}}}$.
C_{3} Cor:

Fig. Cor. 2. Hence the radius of curvature in I , is $=$ 8. $\frac{\text { SI } \times I N}{P q}$.

For that radius $=\frac{\mathrm{IK}^{2}}{\mathrm{~K} m}=$ (by the fimilar triangles $\mathrm{IK} m, \mathrm{Iq} \mathrm{P}$) $\frac{\mathrm{IK} \times \mathrm{IP}}{\mathrm{P} q}=$ (by the fimilar triangles IPS, INK) $\frac{\mathrm{SI} \times \mathrm{IN}}{\mathrm{P} q}$.

P R O P. XIII. Prob.

T'o find the law of the centripetal force, requijite to make a body move in a given curve line.

Let the diftance $\mathrm{SI}=d$, the perpendicular SP (upon the tangent at I) $=p$; then from the nature of the curve, find the value of p in terms of d, and fubftitute it and its fluxion, in the quantity $\frac{\dot{p}}{p+d}$.

Or find the value of $\frac{n \mathrm{~K}}{\mathrm{SI}^{2} \times \mathrm{KN}^{2}}$ or $\frac{n \mathrm{~K}}{\mathrm{SP}^{2} \times \mathrm{IK}^{2}}$. Any of thefe will give the law of centripetal force, by the laft Prop.

$$
E x .1 .
$$

9. If a body revolves in the circumference of a circle; to find the force direEted to a given point S .
Draw SI to the body at I, SP perp to the tangent PI, SG perp. to the radius Cl . Then $\mathrm{SP}=$ GI; becaufe SGIP is a parallelogram. Put SI $=$ $d, \mathrm{SP}=p, \mathrm{SC}=a, \mathrm{CI}=r, \mathrm{CD}=x, \mathrm{ID}$ being perp. to SD. Then in the obtufe angle SCI, $\mathrm{SI}^{2}=\mathrm{SC}^{2}+\mathrm{CI}^{2}+{ }_{2} \mathrm{SCD}$, or $d d=a a+r r+$ $2 a x$; whence $x=\frac{d d-a a-r r}{2 a}$. The triangles SCG and CID are fimilar, whence $\mathrm{CI} \cdot(r): \mathrm{CD}$
$(x):: S C(a): C G=\frac{a x}{r}=\frac{d d-a a-r r}{2 r} ;$ and $\begin{gathered}\text { Fig. } \\ 9 .\end{gathered}$
$p=r+\frac{d d-a a-r r}{2 r}=\frac{d d+r r-a a}{2 r}$; and
$\dot{p}=\frac{d \dot{d}}{r}$. Therefore the force $\left(\frac{\dot{p}}{p^{3} \dot{d}}\right)$ is as $\frac{d \dot{d}}{r p^{j} \dot{d}}=$ $\frac{d}{r p^{3}}=\frac{d \times 8 r^{3}}{r \times \overline{d d}+r r-a a^{3}} ;$ that is, the force is as
$\overline{\overline{d d}+r r-a a^{3}}$
And if $a=r$, the force is as $\frac{\mathbf{1}}{d^{5}}$.

$$
\text { Ex. } 2 .
$$

If a body revolves in an ellipfis; to find the force 10. tending to the center C .

Let $\frac{1}{2}$ tranfverfe $C V=r, \frac{1}{2}$ conjugate $\mathrm{CD}=c$, draw $C I=d$, and its femiconjugate $C R=b$. Then by the properties of the ellipfis (Con. Sect. B. I. Prop. XXXIV.) $b b+d d=r r+c c$, whence $b=\sqrt{r r+c c-d d}$; and (ib. Prop. XXXVII.) b or $\sqrt{r r+c c-\overline{d d}}: c:: r: p=$ $\frac{c r}{\sqrt{r r+c c-d d}} ;$ and $\dot{p}=\frac{c r d \dot{d}}{r r+c c-d d)^{\frac{3}{2}}} \cdot$ Therefore $\frac{\dot{p}}{p^{i d}}=\frac{c r d \dot{d}}{r r+c c-d a^{\frac{3}{2}}} \times \frac{\overline{r r+c c-d d)^{\frac{3}{2}}}}{c^{3} r^{3} \dot{d}}=\frac{d}{c c r r}$. Therefore the force is directly as the diftance CI. After the fame manner, the force tending to the center of an hyperbola, will be found $\frac{-d}{c c r r}$, which is a centrifugal force, directly as the diftance.

Ex. 3.
If a body revolves in an elliphis, to find the law of IIs centripetal force, tending to the focus. S .

Fig. Let the femitranfverfe $\mathrm{OV}=r$, the femiconju11. gate $\mathrm{OD}=c$, draw $\mathrm{SI}=\bar{d}$; and $\mathrm{OI}_{\text {, and }}$ its conjugate $\mathrm{OK}=b$.

Then (Con. Sect. B. I. Prop. XXXV.) $2 r d-d d$ $=b b$; and (ib. Prop. XXXVI.) b or $\sqrt{2 r d-d d}$: $c:: d: p=\frac{c d}{\sqrt{2 r d}-d d}$; and $\dot{p}=$
$\stackrel{c d}{ } \sqrt{2 r d-d d}-c d \times 2 r d-d d-\frac{1}{2} \times r \dot{d}-d \dot{d}$
$2 r d$ - dd
$\frac{c \dot{d} \times \overline{2 r d}-\frac{d d}{}-c d \times \overline{r \dot{d}-d \dot{d}}}{2 r d-d d \frac{1}{2}}=\frac{c r d \dot{d}}{2 r d-d d)^{\frac{1}{2}}}$.
Therefore $\frac{\dot{p}}{p^{\dot{d}} d}=\frac{c r \dot{d} d \times \overline{2 d r-d d)^{\frac{3}{2}}}}{c^{3} d \dot{d} \times \overline{2 d r-d d d^{\frac{3}{2}}}}=\frac{c r d}{c^{3} d^{3}}=\frac{r}{c c d d}$.
Therefore the centripetal force is as $\frac{1}{d d}$, or reciprocall as the fquare of the diftance.

$$
E x .4
$$

12. If a body revolves in the byperbola VI ; to find the law of centripetal force, tending to the focus S.

Draw SI, and the tangent IT, and SP perv. upon it. And let the fernitranfverfe $S O=r$, femiconjugate $=c, \mathrm{SI}=d, \mathrm{SP}=p$, and $\bar{b}=\mathrm{fe}$ miconjugate to 10 .
Then (Con Sect. B. II. Prop. XXXI.) $2 r d+$ $d d=b b$, and $b=\sqrt{2 r d}+d d$. And (ib. Prop. XXXII.) b or $\sqrt{2 r d}+d d: c:: d: p=$ cd
$\frac{c d}{\sqrt{2 r d}+d d}$; whence $\dot{p}=$
$\frac{c \dot{d} \times \sqrt{2 r d+d d}-c d \times \overline{2 r d}+d d}{2 r \frac{1}{2}} \times \overline{r \dot{d}+d \dot{d}}$
$=\frac{c \dot{d} \times \overline{2 r d}+\overline{d d}-c d \times \overline{r d}+d d}{2 r d+d d^{2}}=\frac{c r \dot{d} \cdot}{2 r d+d d^{\frac{1}{2}}}$.
There-

Sect. II. CENTRIPETAL FORCES.
Therefore $\frac{\dot{p}}{p^{3} d}=\frac{c r d \dot{d} \times \overline{2 r d}+d d^{\frac{3}{2}}}{2 r d+d d^{\frac{3}{2}} \dot{d} \times c^{3} d^{3}}=\frac{c r d}{c^{3} d^{3}}=\stackrel{\text { Fig. }}{12 .}$
$\frac{r}{c c d d}$ Therefore the centripetal force is as $\frac{r}{c c d d}$ or
$\frac{1}{d d}$; that is, reciprocally as the fquare of the diftance.

And in like manner the force towards the other focus F, is $\frac{-r}{c c d d}$, or as $\frac{-1}{d d}$, which is a centrifugal force reciprocally as the fquare of the diftance.

Ex. 5.
If a body revolves in tbe parabola VI ; to find the 13. force tending to the focus S .

Draw IS, and the tangent IT, and SP perp. to it. And put $\mathrm{SI}=d, \mathrm{SP}=p$, latus rectum $=r$. Then (Con. Sect. B. HII. Prop. II. and Cor. 3. Prop. XII.) $p p=\frac{1}{4} r d$, and $2 p \dot{p}=\frac{1}{4} r d$; and \dot{p} $=\frac{r \dot{d}}{8 p}=\frac{r \dot{d}}{4 \sqrt{r d}} \cdot$ And $\frac{\dot{p}}{p \dot{d}}=\frac{r \dot{d}}{4 \sqrt{ } r a \times \frac{T}{\delta} r d \sqrt{r d} \times \dot{d}}$
$=\frac{8 r}{4 r r d d}=\frac{2}{r d d}$. Therefore the centripetal force is reciprocally as the fquare of the diftance CI.

Hence, in all the Conic Sections, the centripetal force tending to the focus, is reciprocally as the fquare of the diftance from the focus.

$$
\text { Ex. } 6 .
$$

Let VI be the logaritbmic Jpiral, to find the force 14. tending to the center S .

Draw the tangent IP, and SP perp. to it, let $\mathrm{SI}=d, \mathrm{SP}=p$; then the ratio of d to p is al-

Fig. ways given, fuppofe as m to n. Then $p=\frac{n}{m} d_{\text {, }}$, and $\dot{p}=\frac{n}{m} \dot{d}$. Confequently $\frac{\dot{p}}{p^{\dot{d} d}}=\frac{n \dot{d}}{m} \times \frac{m^{3}}{n^{3} d^{\dot{d}} d}=$ $\frac{m m}{m d^{3}}$; and the centripetal force is as $\frac{1}{d^{3}}$, or reciprocally as the cube of the diftance.
PROP. XIV.
15. The velocity of a body moving in azy curve QAO, in any point A ; is to the velocity of a body moving in a circle at the fame diftance; as $\sqrt{p \dot{d}}$ to $\sqrt{d \dot{p}}$. Putting $d=$ diftance SA, and $p=$ SP the perpendicular on the tangent at A.

Let AR be the radius of curvature; from the point a in the curve infinitely near A, draw am, $a n$ parallel to AS, AR. Let $\mathrm{C}=$ velocity in the curve, $c=$ velocity in the circle. By fimilar triangle SP $(p): S A(d):: a n: a m::$ centripetal force tending to R : centripetal force tending to S : : (Prop. V. Cor. 2.) $\frac{\mathrm{CC}}{\mathrm{AR}}: \frac{c c}{\mathrm{AS}}$. But (Prop. XII. Cor. 2.) $\mathrm{AR}=\frac{\frac{\partial \dot{d}}{\dot{p}}}{\dot{p}}$, whence $p: d:: \frac{\mathrm{CC} \dot{p}}{d \dot{d}}$: $\frac{c c}{d}:: \mathrm{CC} \dot{p}: c c \dot{d} . \quad$ And $p \dot{d}: d \dot{p}:: \mathrm{CC}: c c$.

Cor. I. If $r=$ balf the tranfverfe axis of an ellipfis; then the velocity of a body revolving round the focus, is to that in a circle at the fame diftance; as $\sqrt{2 r-d}: \sqrt{r}$.

$$
\text { For } \dot{p}=\frac{c r d \dot{d}}{2 r d-d d)^{\frac{1}{2}}}(\text { See Ex. 3. Prop. XIII. })_{2}
$$

 and $p=\frac{c d}{\sqrt{2 r d-d d}}$. And the fquares of the $\begin{aligned} & \text { Fig. } \\ & \mathbf{5} .\end{aligned}$ velocities in the curve, and in the circle, are as $\frac{c d \dot{d}}{\sqrt{2 r d-d d}}$ and $\frac{c r d d \dot{d}}{2 r d-d d)^{\frac{3}{2}}}$, or as $\mathbf{1}$ and $\frac{r d}{2 r d-d d}$ or as $2 r-d$ to r.

Cor. 2. Suppofe as before, the velocity of a body revolving round the center of an ellipfis, is to the velocity in a circle at the fame diftance; as balf the conjugate diameter to that diftance, is to the diftance.

$$
\text { For } p=\frac{c r}{\sqrt{r r+c c-d}}, \text { and } \dot{p}=
$$

$\frac{c r d \dot{d}}{c c-d d^{3}}$. Whence, the fquares of thefe ve-
locities are as $\frac{c r \dot{d}}{\sqrt{r r+c c-d d}}$ and $\frac{c r d d \dot{d}}{\sqrt[r+c c-c a a^{\frac{3}{2}}]{ }}$ or as I to $\frac{d d}{r r+c c-d d}$ or as $r r+c c-d d$ to $d d$, or as $b b$ to dd. See Ex. 2. Prop. XIII.

Cor. 3. The velocity in a parabola round the focus, is to the velocity in a circle at the fame diffance; as $\sqrt{2}$ to I .
For $p=\frac{1}{2} \sqrt{ } r d$, and $\dot{p}=\frac{r \dot{d}}{4 \sqrt{ } r d}$ (See Ex. 5. Prop. XIII.) Whence the fquares of thefe velocities are as $\frac{1}{2} \dot{d} \sqrt{ } r d$ and $\frac{r \dot{d} \dot{d}}{4 \sqrt{ } r d}$, or as $\frac{1}{2} r d^{\prime}$ to $\frac{1}{4} r d$; that is as 2 to 1 .

Cor. 4. The velocity of a body in the logaritbmic spiral in any point, is the fame as the velocity of a body at the Same diftance in a circle.

$$
\text { For } p=\frac{n}{m} d, \text { and } \dot{p}=\frac{n}{m} \dot{d},(\text { Ex. 6. Prop. XIII. })
$$

And the fquares of the velocities are as $\frac{n}{m} d \dot{d}$ and $\frac{n}{m} d \dot{d}$, that is, equal.
P R O P. XV. Prob.
16. To find the force which atting in direElion of the ordinate MP, Ball caufe the body to move in that curve.

Draw $m p$ parallel and infinitely near MP, and Ms parallel to AP. Then the force is as the fpace $m r$, thro' which it is drawn from the tangent, in a given time. But ms is the fluxion and in the fecond fluxion of the ordinate PM. Therefore making the fluxion of the time conftant ; or which is the fame thing, making the fluxion of the axis conftant; find the fecond fluxion of the ordinate, which will be as the force.

$$
E x . \mathbf{I} .
$$

Let the curve be an ellipfis whofe equation is $y=$ $\frac{\varepsilon}{r} \sqrt{2 r x-x x}$. Putting $\mathrm{AP}=x, \mathrm{PM}=y, r=$ femitranfverfe, $c=$ femiconjugate. Then $\dot{y}=$ $\frac{c}{r} \times \frac{r \dot{x}-x \dot{x}}{\sqrt{2 r x-x x}}$, and $\ddot{y}=\frac{c}{r} \times \frac{-\dot{x} \sqrt{2 r x-x x}}{2 r x-x x}$
$\frac{-\frac{c}{r} \times \overline{r-x} \times \overline{r \dot{x}-x \dot{x}} \times \frac{x}{2 r x-x x}-\frac{1}{2}}{2 r x-x x}=\frac{c}{r} \times$
$\frac{-2 r x+x x-\overline{r-x}{ }^{2}}{2 r x-x x^{\frac{3}{2}}}=\frac{c}{r} \times \frac{-r r}{2 r x-x x^{\frac{3}{2}}}=\frac{-c r}{y^{3}}$.
That is, the force is as $\frac{-1}{2^{3}}$, or reciprocally as the cube

Sect. II. CENTRIPETAL FORCES.

cube of the ordinate. The fame is true of the Fig. circle, which is one fort of ellipfis.

$$
\text { Ex. } 2 .
$$

Let the curve be a parabola, $\mathrm{AP}=x, \mathrm{PM}=$ y, and $r x=y y$; then $r \dot{x}=2 y \dot{y}$, and $2 \dot{y} \dot{y}+2 y \dot{y}$ $=0$; therefore $y \dot{j}=-\dot{j} \dot{y}$, and $\dot{y}=-\frac{\dot{j} \dot{y}}{y}=-$ $\frac{r r \dot{x} \dot{x}}{4 y y \times y}=\frac{-r r}{4 y^{3}}$, and the force as $\frac{-1,}{y^{3}}$ or reciprocally as the cube of the ordinate.

PROP. XVI.
If the lare of centripetal force be reciprocally as the Square of the diftance. The velocities of bodies revolving in different ellipfes about one common center; are direetly as the Square roots of the parameters, and reciprocally as the perpendiculars to the sangents at thefe points of their orbits.

Let d, D be the diftances in two ellipfes; r, c, l, p; and $\mathrm{R}, \mathrm{C}, \mathrm{L}, \mathrm{P}$, the femitranfverfe, femiconjugate, latus rectum, and perpendicular in the two ellipfes. Then the fquares of the velocities in two circles whofe radii are d, D , (by Prop. IV. Cor. 2.) will be as $d \times$ force in d, and $\mathrm{D} \times$ force in D ; that is, as $\frac{d}{d d}$ and $\frac{\mathrm{D}}{\mathrm{DD}}$ or as $\frac{\mathrm{I}}{d}$ and $\frac{\mathrm{I}}{\mathrm{D}}$.

Then (Prop. XIV. Cor. r.), velocity in theellipfis d : vel. in the circle $d:: \sqrt{2 r-d}: \sqrt{r}$. and vel. in the circled : vel. in the circle $D:: \sqrt{ } \frac{\mathrm{I}}{d}: \sqrt{ } \frac{1}{\mathrm{D}}$.

And (Prop. XIV. Cor. I.)
vel. in the circle $D:$ vel. in theellipfis $D:: \sqrt{R}: \sqrt{2 R-D}$. Therefore vel. in the ellipfis d : vel. in the ellipfis
${ }^{\text {Fig. }} \mathrm{D}:: \sqrt{\frac{2 r-d}{d} \times \mathrm{R}}: \sqrt{\frac{2 \mathrm{R}-\mathrm{D} \times r}{\mathrm{D}} \times}:: \sqrt{\frac{2 r-d}{d r}}$: $\sqrt{ } \frac{2 R-D}{D R}$.

But (Con. Sect. B. I. Prop. 36.) $p=c \sqrt{2 r-d} d^{9}$ and $p \sqrt{ } \frac{2 r-d}{d}=c$, and $\sqrt{ } \frac{2 r-d}{d}=\frac{c}{p}$, and $\sqrt{2 r-d} \frac{c}{d r}=\frac{\sqrt{\frac{1}{2} l}}{p \sqrt{ } r}$ (becaufe $\frac{c c}{r}=\frac{1}{2} l$ by the Conic Sections.) In like manner $\sqrt{ } \frac{2 R-D}{D R}=$ $\frac{\sqrt{\frac{1}{2} \mathrm{~L}}}{\mathrm{P}}$. Whence, vel. in the ellipfis d : vel. in the ellipfis $D:: \frac{\sqrt{ } l}{p}: \frac{\sqrt{ } \mathrm{L}}{\mathrm{P}}$.

Cor. 1. Hence the velocities in the two ellipfis, are as $\sqrt{2 r-d} \frac{d r}{d r}$, and $\sqrt{2 \mathrm{R}-\mathrm{D}} \frac{\mathrm{DR}}{}$.

Cor. 2. Alfo the Squares of the areas defcribed in the fame time, are as the parameters.

For the areas are as the arches \times perpendiculars, or as the velocities \times perpendiculars; that is, as $\frac{\sqrt{ } l}{p} \times p$ and $\frac{\sqrt{ } \mathrm{L}}{\mathrm{P}} \times \mathrm{P}$, or as $\sqrt{ } l$ and $\sqrt{ } \mathrm{L}$.

Cor. 3. The velocity of a body in different parts of its orbit is reciprocally as the perpendicular upon the tangent at that point; and therefore is as $\sqrt{ } \frac{2 r-d}{d}$.

For the parameter is given.
Cor. 4. The velocity in a conic Sestion at its greateft or leaft diftance, is to the velocity in a circle at the

Sect. II. CENTRIPETAL FORCES.

the fame diftance; as the Square root of the parame- Fig. ter, to the Square root of twice that diftance.

For here $d=\mathrm{D}=p=\mathrm{P}$, and $\mathrm{L}=2 \mathrm{D}$. Therefore the velocity in the ellipfis, to the velocity in the circle; as $\frac{\sqrt{ } l}{\mathrm{P}}: \frac{\sqrt{ } 2 \mathrm{D}}{\mathrm{P}}:: \sqrt{ } l: \sqrt{ } 2 \mathrm{D}$.

Cor. 5. The velocity in an ellipfis at its mean diftance, is the fame as in a circle at the fame diftance.

For if d be the mean diftance, then $p=c$. And if D be the radius of the circle, then $\mathrm{L}=2 \mathrm{D}$, and $\mathrm{P}=\mathrm{D}$. Whence, vel. in the ellipfis : to the vel. in the circle $:: \frac{\sqrt{ } l}{c}: \frac{\sqrt{ } 2 \mathrm{D}}{\mathrm{D}}::\left(\right.$ (becaufecc $\left.=\frac{1}{2} l r\right)$
$\frac{\mathrm{I}}{\sqrt{\frac{1}{2}} r}: \frac{\mathrm{I}}{\sqrt{\frac{1}{2} \mathrm{D}}}:: \sqrt{ } \mathrm{D}: \sqrt{ } r$. But $\mathrm{D}=r$, therefore the velocities are equal.

Cor. 6. Both the real and apparent velocity round 17 . the focus F , is greateft at A , the neareft vertex; and leaft at B , the remote vertex.

For the real velocity is reciprocally as the perpendicular, which is leaft at A and greateft at B. And the apparent velocity at F is reciprocally as the fquare of the diftance from F, which diftance is leaft at A, and greateft at B, (Cor. 2. and 3. Prop. XI.)

Cor. 7. The fame things fuppofed, and PC, CK 23. being Semiconjugates; the velocity in the curve, is to the velocity towards the focus F; as CK to $\longdiv { \mathrm { CK } ^ { 2 } - \mathrm { CD } ^ { 2 } }$.
For vel. in the curve : vel. towards $\mathrm{F}:: \mathrm{Pp}$: $p n:: \mathrm{FP}: \mathrm{NP}:: d: \sqrt{d d-p p}$. But $p p=$ $\frac{c c d}{2 r-d}$, and $d d-p p=\frac{2 r d-d d-c c}{2 r-d} d$. Whence vel. in the curve : vel. towards $\mathrm{F}:: d$:

$\longdiv { \mathrm { CK } ^ { 2 } - \mathrm { CD } ^ { 2 } }$

Cor. 8. The afcending or defcending velocity is the greatef when FP is balf the latus rectum, or when FP is perp. to AB.
For $\sqrt{2 r d-d d}: \sqrt{2 r d-d d-c c}::$ vel. in the curve $\left(\frac{\sqrt{ } 2 r-d}{d}\right):$ vel. towards $\mathrm{F}=$ $\checkmark^{2 r d-\frac{d d}{d d}-c c}$, and making the fquare of this velocity a maximum, then $\frac{2 r d-d d-c c}{d d}=m$, and $\overline{2 r \dot{d}-2 d \dot{d}} \times d d-2 d \dot{d} \times \overline{2 r d-d d-c c}=0 ;$ and $r d-d d-2 r d+d d+c c=0$, and $-r d$ $+c c=0$. whence $d=\frac{c c}{r}=$ half the latus rectum.
Cor. 9. If FR , the diftence from the focus to the
 the angular motion about the focus F , is equal to the mean motion.

For the area of a circle whofe radits FR is $=$
$\overline{C A \times C D}$ is equal to the area of the ellipfis; and if we fuppofe them both defcribed in equal times; then the fmall equal parts at R will be defcribed in equal times; and therefore the angular velocities at F will be equal; and both equal to the mean motion. The angular motion in the ellipfis from B to R will be nower; and from R to A fwifter, than the mean motion.

PR O P. XVII.

If the centripetal forces be reciprocally as the 17. Squares of the diffances; the periodic times in ellipfes, weill be in the Sefquiplicate ratio of the tranfverfe axes AB ; or the fquares of the periodic times, will be as the cubes of the mean diftances FD, from the common center.

Put the fimbols as in the laft, and $t, \mathrm{~T}$, for the periodical times. Then by the nature of the ellipfis $c c=\frac{1}{2} l r$, and $c=\sqrt{\frac{1}{2}} l r$, and $r c=r \sqrt{\frac{1}{2}} l r$. And for the fame reafon $\mathrm{KC}=\mathrm{R} \sqrt{\frac{1}{2}} \mathrm{LR}$. Alfo (Prop. XVI. Cor. 2.) the areas defcribed in the lame time are as the fquare roots of the parameters; and therefore the whole areas of the ellipfes, are as the periodical times multiplied by the fquare roots of the parameters. But the whole areas are alfo as the rectangles of the axes; therefore the rectangles of the axes are as the periodical times multiplied by the fquare roots of the parameters; that is, $r c$ or $r \sqrt{\frac{1}{2}} l r: \mathrm{RC}$ or $\mathrm{R}^{\frac{1}{2} \mathrm{LR}}:: t \sqrt{ } l$: $\mathrm{T} \sqrt{ } \mathrm{L}$. And fquaring, $\frac{1}{2} l r^{3}: \frac{1}{2} \mathrm{LR}^{3}:: t t l:$ TTL. That is, $r^{3}: \mathrm{R}^{3}:: t t: \mathrm{TT}$. And $t: \mathrm{T}:: r^{\frac{3}{2}}: \mathrm{R}^{\frac{3}{2}}:$: $\overline{2 r^{\frac{3}{2}}}: \overline{2 \mathrm{R}^{\frac{3}{2}}}$.

Cor. I. The areas of the ellipfes are as the periodic times multiplied by the fquare roots of the parameters.

Cor. 2. The periodic time in an ellipfs, is the fame as in a circle, whofe diameter is equal to the tranfverfe axis AB ; or the radius equal to the mean difance FD .

Cor. 3. The quantities of matter in central attraczing bodies, that bave others revolving about them in elliples; are as the cubes of the mean diftances, divided by the Squares of the periodical times.

D
For

CENTRIPETAL FORCES.

Fig.
For (Cor. 2.) the periodic times are the fame 17. when the mean diftances are equal to the radii; and the reft follows from Prop. VII.

PROP. XVIII.

18. If the centripetal forces be directly as the diftances; the periodic times of bodies moving in ellipfes round the fame center, will be all equal to one another.

Let AEL be an ellipfis, AGL a circle on the fame axis AL, C the center of both. Draw the tangent AD , and $n p \mathrm{~F}$ parallel to it , and $\mathrm{D} n, \mathrm{~B} p$ parallel to AC: AF being very fmall. Then $D n$ equal to $\mathrm{B} p$ will be as the centripetal force; and therefore $A D$ and $A B$, or $A n$ and $A p$ will be defcribed in the fame time, in the circle and ellipfis. Confequently the areas defrribed in thefe equal times will be $\mathrm{A} n \mathrm{C}$ and $\mathrm{A} p \mathrm{C}$. But thefe areas are to one another as $n \mathrm{~F}$ to PF, or as GC to EC; that is, as the area of the circle AGL to the area of the ellipfis AEL. Therefore fince parts proportional to the wholes are defcribed in equal times; the wholes will be defcribed in equal times. And therefore the periodic times, in the circle and ellipfis, are equal.

But (Prop. V. Cor. 4.) the periodic times in all circles are equal, in this law of centripetal force; and therefore the periodic times in all ellipfes are equal.
Cor. The velocity at any point I of an ellipfis, is as the rectangle of the two axes AC, CE; divided by the perpendicular CH , upon the tangent at I .

For the arch $\mathrm{I} \times \mathrm{CH}$ is as the area defcribed in a fmall given part of time, and that is as the whole area (becaufe the periodic times are equal) or as $\mathrm{AC} \times \mathrm{CE}$. And therefore the arch I or the velo$\xrightarrow{A C \times C E}$. city, is as $\frac{\mathrm{CH}}{}$.

PROP.

P R O P. XIX.

The denfities of central attracting bodies, are reciprocally as the cubes of the parallaxes of the bodies revolving about them (as feen from thefe central bo. dies), and reciprocally as the fquares of the periodic times.

For the denfity multiplied by the cube of the diameter, is as the quantity of matter; that is (by Prop XVII. Cor. 3.) as the cube of the mean diftance divided by the fquare of the periodical time of the revolving body. And therefore the denfity is as the cube of the diftance, divided by the cube of the diameter, and by the fquare of the periodic time. But the diameter divided by the diftance is as the angle of the paralax; therefore the denfity is as I divided by the cube of the paralax, and the fquare of the periodic time.

> P R O P. XX.

If two bodies A, B, revolve about cach otber; they will both of thems revolve about their center of gravity.

Let C be the center of gravity of the bodies A, B , acting upon one another by any centripetal forces. And let AZ be the direction of A's motion; draw BM parallel to $A Z$, for the direction of B. And let $A Z, B H$ be defcribed in a very fmall part of time, fo that AZ may be to BH , as AC to BC ; and then C will be the center of oravity of Z and H , becaufe the triangles ACZ and BCH are fimilar. Whence $A C: C B:: \mathbb{Z C}: C H$. But as the bodies A and B attrade one another, the fpaces $\mathrm{A} a$ and $B b$ they are drawn thro', will be reciprocally

Fig. as the bodies, or directly as the diftances from the 19. center of gravity; that is, $\mathrm{A} a: \mathrm{B} b:: \mathrm{AC}: \mathrm{BC}$. Compleat the parallelograms Ac and $\mathrm{B} d$; and the bodies, inftead of being at Z and H , will be at c and d. But fince $\mathrm{AC}: \mathrm{BC}:: \mathrm{A} a: \mathrm{B} b$. By divifion $\mathrm{AC}: \mathrm{BC}:: a \mathrm{C}: b \mathrm{C}$. But $\mathrm{AC}: \mathrm{BC}:: \mathrm{AZ}$: $\mathrm{BH}:: a c: b d$. Whence $a \mathrm{C}: b \mathrm{C}:: a c: b d$. Therefore the triangles $c \mathrm{C} a$, and $d \mathrm{C} b$ are fimilar, whence $\mathrm{C} c: \mathrm{C} d:: a c: b d:: \mathrm{AC}: \mathrm{BC}:: \mathrm{B}: \mathrm{A}$. Therefore C is ftill the center of gravity of the bodies at c and d.

In like manner, producing $\mathrm{B} d$ and $\mathrm{A} c$, till $d g$ be equal to $\mathrm{B} d$, and $c q$ to $\mathrm{A} c$; and if $c f, d b$, be the fpaces drawn thro' by their mutual attractions; and if the parallelograms $c e, d i$, be compleated. Thien it will be proved by the fame way of reafoning, that C is the center of gravity of the bodies at q and g, and alfo at e and i, where A defcribes the diagonals $\mathrm{A} c, c e, \& c$. and B the diagonals $\mathrm{B} d, d i, \& \varepsilon \mathrm{c}$. and fo on ad infinitum.

If one of the bodies B is at reft whilft the other moves along the line AL. Then the center of gravity C will move uniformly along the line CO parallel to AL. Therefore if the fpace the bodies move in, be fuppofed to move in direction CO, with the velocity of the center of gravity; then the center of gravity will be at reft in that fpace, and the body B will move in direction BH parallel to CO or $A Z$; and then this cafe comes to the fame as the former. Therefore the bodies will always move round the center of gravity, which is either at reft, or moves uniformly in a right line.

If the bodies repel one another; by a like reafoning it may be proved that they will conftantly move round their center of gravity.

If the lines $\mathrm{CA}, \mathrm{C}, \mathrm{C}_{e}$, $8 x \mathrm{c}$. be equal; and $\mathrm{CB}, \mathrm{C} d, \mathrm{C} i, \& \mathrm{c}$. alfo equal. Then it is the cafe of two bodies joined by a rod or a ftring; or of one body compofed of two parts. This body or Fig. bodies will always move round their common cen- 19 . ter of gravity.

Cor. ェ. The directions of the bodies in oppofte points of the orbits, are always parallel to one another.

For fince $\mathrm{AZ}: \mathrm{Z} c:: \mathrm{BH}: \mathrm{H} d$; and $\mathrm{AZ}, \mathrm{Z} c$ parallel to $\mathrm{BH}, \mathrm{H} d$; therefore the $<\mathrm{ZAc}=<$ $\mathrm{HB} d$, and $\mathrm{B} d$ parallel to $\mathrm{A} c$. And for the fame reafon di is parallel to $c e, \& c$.

Cor. 2. Two bodies, asting upon one another by any forces; defcribe fimilar figures about their common center of gravity.
For the particles $\mathrm{A} c, \mathrm{~B} d$ of the curves are parallel to one another, and every where proportional. to the diftances of the bodies AC, BC.

Cor. 3. If the forces be direcily as the diftances; the bodies will defcribe concentrical ellipfes round the center of gravity.

Cor. 4. If the forces be reciprocally as the Squares. of the diftances; the bodies will defcribe fimilar ellipfes or fome conic fections, about each otber, wbofe center of gravity is in the focus of both.

P R O P XXI.

If two bodies S, P attract each other with any 20. forces, and at the fame time revolve about their center of gravity C. Then if either body P, with the fame force, defcribes a fimilar curve about the otber body S at reft, its periodical time, will be to the periodical time of either about the center of gravity; as the Square root of the fum of the bodies ($\sqrt{\mathrm{S}+\mathrm{P}})$, to the Square root of the fixed or central body $(\sqrt{ } \mathrm{S})$.

Let PV be the orbit defrribed about C , and Pv that defribed about S . Draw the tangent Pr , take

CENTRIPETAL FORCES.

Fig. the arch $P Q$ extremely fmall, and draw $C Q R$; 20. alfo draw Sqr parallel to $C R$, and then $P Q$ and $P q$ will be fimilar parts of the curves PV and Pv .

Now the times that the bodies are drawn from the tangent thro' the fpaces $\mathrm{QR}, q r$, with the fame force, will be as the fquare roots of the fpaces $Q R$, $q r$; that is (becaufe of the fimilar figures CPRQ and SPrq) as $\sqrt{\mathrm{CP}}$ to $\sqrt{\mathrm{SP}}$; that is, (by the nature of the center of gravity) as $\sqrt{ } S$ to $\sqrt{S+P}$. But the times wherein the bodies are drawn from the tangent thro' $\mathrm{RQ}, r q$, are the times wherein the fimilar arches PQ, Pq are defcribed; and thefe times are as the whole periodic times. Therefore the periodic time in PV, is to the periodic time in Pv ; as $\sqrt{ } \mathrm{S}$ to $\sqrt{\mathrm{S}+\mathrm{P}}$.
Cor. 1. The velocity in the orbit PV about C , is to the velocity in the orbit Pv about S ; as $\sqrt{ } \mathrm{S}$ to

S P
For the velocities are as the fpaces divided by the times; therefore, vel. in PV : vel. in $\mathrm{Pv}:$: $\frac{P Q}{\sqrt{S}}: \frac{\mathrm{Pq}}{\sqrt{S+P}}:: \frac{\mathrm{CP}}{\sqrt{S}}: \frac{\mathrm{SP}}{\sqrt{\mathrm{S}+\mathrm{P}}}:: \frac{\mathrm{S}}{\sqrt{S}}: \frac{\mathrm{S}+\mathrm{P}}{\sqrt{\mathrm{S}+\mathrm{P}}}$ $:: \sqrt{ } S: \sqrt{S+P}$.

Cor. 2. Bodies revolving round their common center of gravity, defrribe areas proportional to the times.
P R O P. XXII.
20. If the forces be reciprocally as the fquares of the diftances; and if a body revolves about the center L in the Same periodical time, that the bodies S, P, revolve about the center of gravity C. Then will SP: LP : : $\sqrt[3]{\mathrm{S}+\mathrm{P}}: \sqrt[3]{\mathrm{S}}$.

Let PN be the orbit defcribed about L . Then (Prop. XXI.) per. time in $\mathrm{PQ}:$ per. time in $\mathrm{Pg}:$:

Sect. II. CENTRIPETAL FORCES. fuppofing $P Q, P N$, fimilar arches. Therefore per. time in $\mathrm{PQ}:$ per. time in $\mathrm{PN}:: \sqrt{\overline{\mathrm{CP}}} \times \mathrm{SP}^{\frac{3}{2}}$: $\sqrt{ } \mathrm{SP} \times \mathrm{LP}^{\frac{3}{2}}:: \sqrt{\mathrm{CP}^{\times \mathrm{SP}^{2}}}: \sqrt{\mathrm{LP}^{3}}$. But the periodic times are equal ; therefore $\sqrt{\mathrm{CP} \times \mathrm{SP}^{2}}=\sqrt{\mathrm{LP}^{3}}$, and $\mathrm{LP}^{3}=\mathrm{CP} \times \mathrm{SP}^{2}$, and $\mathrm{LP}=\sqrt[3]{\mathrm{CP} \times \mathrm{SP}^{2}}$. But LP : SP : : $\sqrt[3]{\mathrm{CP} \times \overline{\mathrm{SP}^{2}}: \mathrm{SP} \text { or } \sqrt[3]{\mathrm{SP}^{3}}:: ~}$ $\sqrt[3]{\mathrm{CP}}: \sqrt[3]{\mathrm{SP}}:: \sqrt[3]{\mathrm{S}}: \sqrt[3]{\mathrm{S}+\mathrm{P}}$.

Cor. I. If the forces be reciprocally as the fquares of the diftances; the tranfverfe axis of the ellipfsis defcribed by P about the center of gravity C , is to the tranfverfe axis defcribed by P about the other body S at reft, in the fame periodical time; as the cube root of the fum of the bodies $S+P$, to the cube root of the fixed or central body S.

Cor. 2. If two bodies attracting each other move about their center of gravity. Their motions will be the fame as if they did not attract one anotber, but were both attracted with the fame forces, by another body placed in the center of gravity.

P R O P. XXIII. Prob.

Suppofe the centripetal force to be direstly as the $\mathbf{2 1} \mathbf{1}$. diftance. To determine the orbit which a body will defcribe, that is projected from a given place P , with a given velocity, in a given direction PT.

By Ex. 2. Prop. XIII. the body will move in an ellipfis, whofe center is C the center of force; and the line of direction PT will be a tangent at the point P. Draw CR perp. to PT. And let the diftance $\mathrm{CP}=d . \mathrm{CR}=p$, femitranfverfe axis

Hig. $\mathrm{CA}=\mathrm{R}$, femiconjugate axis $\mathrm{CB}=\mathrm{C} . \quad \mathrm{CG}$ (the 21. femiconjugate to CP) $=$ B. $f=$ fpace a body would defcend at P , in a fecond, by the centripetal force. $v=$ the velocity at P , the body is projected with, or the fpace it defribes in a fecond. Then $\sqrt{2 d f}=$ velocity of a body revolving in a circle at the diftance CP.

Then (Prop. XIV. Cor. 2.) $v: \sqrt{ } 2 d f:: \mathrm{B}: d$, and $\mathrm{B} \sqrt{ } 2 d f=d v$, and $2 \mathrm{BB} d f=d d v v$, whence $\mathrm{BB}=\frac{d v v}{2 f}$, and $\mathrm{B}=v \sqrt{ } \frac{d}{2 f}$ But (Con. Sect. B. I. Prop. XXXIV.) $\mathrm{RR}+\mathrm{CC}=\mathrm{BB}+d d=$ vod
$\frac{v v d}{2 f}+d d$. And (ib. Prop. XXXVII.) $\mathrm{CR}=\mathrm{B} p$ $=p v \sqrt{ } \frac{d}{2 f}$. Therefore $\mathrm{RR}+\mathrm{CC}+2 \mathrm{RC}=$ $\frac{v v d}{2 f}+d d+2 p v \sqrt{ } \frac{d}{2 f}$, and $\mathrm{R}+\mathrm{C}=$
$\sqrt{\frac{v v d}{2 f}+d d+2 p v \sqrt{ } \frac{d}{2 f}}=m$. Alfo RR + CC $-2 \mathrm{RC}=\frac{v v d}{2 f}+d d-2 p v \sqrt{ } \frac{d}{2 f}$, and $\mathrm{R}-\mathrm{C}=$ $\sqrt{\frac{v v d}{2 f}+d d-2 p v \sqrt{ } \frac{d}{2 f}}=n$. Therefore $\mathrm{R}=$ $\frac{m+n}{2}$, and $\mathrm{C}=\frac{m-n}{2}$.

Then to find the pofition of the tranfverfe axis AD. Let F, S be the foci. Then (by Con. Sect. B. I. Prop. II. Cor.) we fhall have SC or $\mathrm{CF}=$ $\overline{\mathrm{RR}-\mathrm{CC}}$. Put FP $=x$; then $\mathrm{SP}=2 \mathrm{R}-x$, and (ib Prop. XXXV.) $\mathrm{SP} \times \mathrm{PF}$ or ${ }_{2} \mathrm{R} x-x_{x}=$ BB , and $\mathrm{RR}-{ }_{2 \mathrm{R} x}+x x=\mathrm{RR}-\mathrm{BB}$, and $\mathrm{R}-x= \pm \sqrt{\mathrm{RR}-\overline{\mathrm{BB}}}$; whence $x=\mathrm{R} \pm$
$\overline{\mathrm{RR}-\mathrm{BB}}$; that is, the greater part $\mathrm{FP}=\mathrm{R}+$
$\sqrt{\overline{R R}-\mathrm{BB}}$, and the leffer part $\mathrm{SP}=\mathrm{R}$ - Fig. $\sqrt{\overline{\mathrm{RR}-\mathrm{BB}}}$. Then in the triangle PCF or PCS, all the fides are given, to find the angle PCF or PCA.

Cor. The periodical time in feconds, is 3.1416 $\sqrt{2 d}$.

For arch $\sqrt{2 d f}$: time $\mathbf{1}^{\prime \prime}:$: circumference 3.1416 $\times 2 d: 3.1416 \sqrt{ } \frac{2 d}{f}$ the periodical time in a circle whofe radius is d. And by Prop. XVIII. the periodical time is the fame in all circles and ellipfes.

P R O P. XXIV. Prob.

Suppofing the centripetal force reciprocally as the 22. Square of the diftance; to determine the orbit wbich a body will defcribe; that is, projected frsm a given place P , with a given velocity, in a given direction PT.

By Prop. XIII. the body will move in a conic fection, whofe focus is S the center of force. And the line of direction PT will be a tangent at the point P. Let the diftance $S P=d$, tranfverfe axis $\mathrm{AD}=z . f=$ fpace a body will defcend at P , in a fecond, by the centripetal force. $v=$ the velocity the body is projected with from P, or the fpace it defcribes in a fecond. Then $\sqrt{2 d f}$ is the velocity of a body revolving in a circle, at the diftance SP.
Then (Prop. XIV. Cor. I.) $v: \sqrt{2 d f}:: \sqrt{z-d}$: $\sqrt{\frac{1}{2}} z$. Whence $v \sqrt{\frac{1}{2}} z=\sqrt{2 d f z-2 d d f}$, and $v v z=4 d f z-4 d d f$; and $4 d f z-v v z=4 d d f$. whence $z=\frac{4 d d f}{4 d f-v v}=A D$. And $\mathrm{PH}=z-$ $d=\frac{d v v}{4 d f-v v}$. Therefore if $4 d f$ is greater than

CENTRIPETAL FORCES

Fig. $v v,{ }^{2}$ is affirmative, and the orbit is an ellipfis. 22. But if leffer, z is negative, and the curve is a hyperbola, and if equal, 'tis a parabola.

Draw SR perp. to PT , and let $\mathrm{SR}=p$. Alfo draw from the other focus H, HF perp. to PT. Then (Con. Sect. B. I. Prop. X.) the angle SPR $=$ angle HPF, whence the triangles SPR, HPF are fimilar; therefore $\mathrm{SP}(d): \mathrm{SR}(p):: \mathrm{HP}(z-$ d) : $\mathrm{HF}=\frac{z-d}{d} p$; and (ib. Prop. XXI.) SR \times HF or $\frac{z-d}{d} p p=$ rectangle DHA or CB^{2}, the fquare of half the conjugate axis; therefore $\mathrm{CB}=$ $p \sqrt{\frac{z-d}{d}}$.

In the triangle SPH, the angle SPH and the fides SP, PH are given, to find the angle PSH_{3} the pofition of the tranfverfe axis.

Cor. 1. The periodical time in the ellipfis APDB $=3.1416 \times \frac{4 d d f}{4 d f-v v)^{\frac{3}{2}}}$.

For $3.1416 \sqrt{ } \frac{2 d}{f}=$ periodic time in the circle whofe radius is d. And (Prop. XVII.) $\overline{2 d^{\frac{3}{2}}}: 3.1416$ $\sqrt{\frac{2 d}{f}}:: z^{\frac{3}{2}}:$ period. time in the ellipfis $=3.1416$ $\sqrt{\frac{2 d}{f}} \times \frac{\bar{z})^{\frac{3}{2}}}{2 d}=3.1416 \times \frac{4 d d f}{4 d f-v v)^{\frac{3}{2}}}$.

Cor. 2. The latus reitum of the axis AD is $=$ $\frac{p p v v}{d d f}$.

Cor. 3. Hence the tranfverfe axis and the periodic time will remain the fame, whatever be the angle of direCiion SPT.

For

Sect.II. CENTRIPETAL FORCES.

For no quantities but d, f, and v are concerned; Fig. all which are given. 22.

Scholium.

Some people have dreamed that there may be a fyftem of a fun and planets revolving about it_{2} within any fmall particle of matter; or a world in miniature. But this cannot be; for though matter is infinitely divifible; yet the law of attraction of the fmall particles of matter, not being as the fquares of the diftances reciprocally, but nearer the cubes; therefore the revolution of one particle of matter about another, cannot be performed in an ellipfis, but in fome other curve ; where it will continually approach to or recede from the center; and fo at laft will lofe its motion. Such motion as thefe can be nothing like that of a fun and planets.

PROP. XXV.

If a body revolves in the circumference of a circle 24. ZPA, in a reffing medium, whofe denfty is given. To find the force at any place P , tending to the center C; as alfo the time, velocity, and refifance. Suppofing the refiftance as the fquare of the velocity.

Draw PC, and $d p$ parallel and infinitely near it, cutting the tangent Pd in d. And put $\mathrm{CZ}=r_{\text {, }}$ $\mathrm{ZP}=z$, time of defcribing $\mathrm{ZP}=t$, velocity at $\mathrm{P}=v$, refiftance $=\mathrm{R}, f=$ force at $\mathrm{P}, g=$ force of gravity at $\mathrm{Z}, c=$ velocity in Z . And let a body moving uniformly with the velocity $\mathbf{1}$, thro the fpace 1 , in the time 1 , meet the refiftance \mathbf{x}. in the medium. And let a body defcend thro' the fpace a, by the force g at Z, in the fame time $\mathbf{1}$.

1. By the laws of uniform motion, the face is as the time \times velocity. Whence $\mathbf{I}($ fpace $): \mathbf{I} \times \mathbf{I}$

$$
(\text { time } \times \text { vel. }):: \dot{z}: v \dot{t}=\dot{z}, \text { whence } \dot{t}=\frac{\dot{z}}{v} .
$$

2. By the nature of the circle, $d p=\frac{\dot{\dot{z}}^{2}}{2 r}=\frac{v v i t}{2 r}$.
3. By accelerated motion, the fpace is as the force \times fquare of the time; whence $g \times 1^{2}$ (force X time $\left.{ }^{2}\right): a($ fpace $):: \ddot{f t t}: d p$ or $\frac{v v t t}{2 r}:: 2 r f: v v$ $=\frac{2 a r f}{g}$. And $c c=2 a r$.
4. The velocity generated (or deftroyed) is as the force \times time ; therefore, $g \times I$ (force \times time): $2 a$ (velocity) : : $\mathrm{R} \dot{t}:-\dot{v}=\frac{2 a \mathrm{R} \dot{t}}{g}=\frac{2 a \mathrm{R} \dot{z}}{g v}$, and $\dot{v}=\frac{2 a \mathrm{R} \dot{z}}{g}$.
5. The refiftance is as the fquare of the veloci$t y$, whence I^{2} (vel. ${ }^{2}$): I (refiftance) $:: v v: R=v v$.
Therefore - $v \dot{v}=\frac{2 a \mathrm{R} \dot{z}}{g}=\frac{2 a v v \dot{z}}{g} . \quad$ And $\frac{\dot{v}}{v}=\frac{2 a \dot{z}}{g}$, whence $-\log : v=\frac{2 a z}{g}$, and correct ed, $\log : \frac{c}{v}=\frac{2 a z}{g}$.

Again, fince $\frac{2 a r f}{g}=v v, \frac{a r \dot{f}}{g}=v \dot{v}=-$ $\frac{2 a v v \dot{z}}{g}$, and $\dot{f}=-\frac{2 v v \dot{z}}{r}=-\frac{4 a r f \dot{z}}{g r}$, and $-\frac{\dot{f}}{f}$
$=\frac{4 a \dot{z}}{g}$, and $-\log : f=\frac{4 a z}{g}$, and corrected, $\log :$ $\frac{g}{f}=\frac{4 a z}{g}$.
Alfo $\dot{i}=\frac{\dot{z}}{v}=\frac{-\dot{v}}{2 a v v}$, and $t=\frac{g}{2 a v}$, and corrected $t=\frac{g}{2 a v}-\frac{g}{2 a c}$.

Cor.

Sect. II: CENTRIPETAL FORCES.
Cor. 1. Hence $v=$ number belonging to the loga- Fig. ritbm: $\log : c-\frac{2 a z}{g}$. And $f=$ number belonging to the logarithm: $\log : g-\frac{4 a z}{g}$.

Cor. 2. Thberefore the logaritbms of v and f, each of them feverally decreafes equally, in defcribing equal spaces, ad infinitum. And therefore at every revolution, the log: of v is equally diminifhed, and likewife that of f. But the body will revolve for ever, for when v is o, t will be infinite.

Cor. 3. Hence if the central body at C, was fo diminifhed that its log: may decreafe equally in defcribing equal \int paces, or in each revolution, after the manner as before-mentioned; then the body will perpetually revolve in a circle, in a medium of uniform denfity.

Fig.

[46]

S E C T. III.

The motion of three bodies acting upon one another ; the perturbuting forces of a third body. The motion of bodies round an axis at ref, or baving a progreflive motion, and other things of the fame nature.

PROP. XXVI.

5. If a body be projected from A , in a given direction AD , and be attracted to two fixed centers S, T, not in the fame plane with AD; the revolving triangle SAT, drawn tbro' the moving body, Ball defcribe \&qual folids in equal times, about the line ST.

Divide the time into infinitely fmall equal parts; it is plain that equal right lines $A B, B C, C D, \& c$. would be defcribed in thefe equal times; and confequently that all the folid pyramids $S T A B, S T B C$, STCD, \&c. are equal, which would be defcribed in the fame equal times; if the moving body was not acted on by the forces S and T.
But let the forces at S and T, act at the end of the feveral intervals of time; as fuppofe the force T to act at B in direction BT ; fo that the body, inftead of being at C, is drawn from the line $B C$, in the direction CF, parallel to BT. And in like manner it is drawn from the line $B C$, by the force S, in direction CE parallel to $S B$. And therefore, by the joint forces, the body at the end of the time, muft be fomewhere in the plane ECF parallel to

Sect. III. CENTRIPETAL FORCES.

SBT, as at I. But (Geom. VI. 17.) the folid Fig. pyramids STBI and STBC, are equal; being con- 25 . tained between the parallel planes ECF and SBT, and therefore have equal hights; whence STBI $=$ pyramid STAB.

In like manner continue BI , making $\mathrm{IK}=\mathrm{BI}$; and in the next part of time, the body would arrive at K, defcribing the pyramid STIR equal to STBI. But being drawn from the line IK, by the forces S, T, in the directions $K L, K N$, parallel to IS, IT; the body will be found at the end of the time, fomewhere in the plane LKN parallel to SIT, as fuppofe at O , and then it will have defcribed the folid $S T I O=S T I K=S T B I=p y$. ramid STAB.

And in the fame manner producing $I O$ to P, till $O P=O I$. Then the body, attracted from O, by the forces S, T, will defcribe another equal pyramid. And fo it will continue to defcribe equal pyramids in equal times; and confequently the whole folids defcribed are proportional to the times of defcription.

Cor. 1. When the number of lineole AB, BI, IO, $\mathcal{E}^{\circ} c$. is increafed, and their magnitude diminifhed, ad infinitum; the orbit ABIO, becomes a curve.

Cor. 2. Any line AB is a tangent at A, BI at B , $\mathcal{E}^{\circ} c . \mathrm{A}, \mathrm{B}, \mathcal{E}^{2} \mathrm{c}$. being any points in the orbit.

Cor. 3. But the orbit ABIO is not contained ine one plane, except in fome particular cafes.

For that the orbit may not deviate from a plane ; the forces on both fides thereof, ought to be alike.

PROP. XXVII.

26. If the body T revolves in the orbit TH , about the body S at a great diftance, whilft a leffer body P revolves about T very near; and if C be the centripetal force of S alting upon T . Then the difurbing force of S upon P is $=\frac{{ }_{3} \mathrm{PK}}{\mathrm{ST}} \mathrm{C}$. Suppofing PK parallel, and KT perp. to ST. And $\frac{\mathrm{PT}}{\mathrm{ST}} \mathrm{C}=$ the increafe of centripetal force from P towards T .

Let $\mathrm{ST}=r, \mathrm{PT}=a, \mathrm{PK}=y, g=$ force of gravity, $b=$ fpace defcended thereby in time \mathbf{I}. $s=$ the fpace defcended in the time I , by the force C. $p=$ periodic time of T about S , and $t=$ per. time of P about T. $\gamma=$ centripetal force of T at $\mathrm{P}, \pi=3.1416$.
Since attraction is reciprocally as the fquare of the diftance, then force of S acting at T : force of S acting at $\mathrm{P}:: \frac{1}{\mathrm{ST}^{2}}: \frac{1}{S \mathrm{P}^{2}}:: \frac{1}{r r}: \frac{1}{r-y^{2}}:: r$:
$r+2 y$, nearly. And force of S acting at $T:$ to difference of the forces : $: r: 2 y$; that is, $r: 2 y:$: $\mathrm{C}: \frac{2 y}{r} \mathrm{C}=$ difference of the forces; and this is the fingle force by which P is drawn from the orbit QAZ in direction KP or PS.

But fince the motion will be the fame, whether the fingle force PS act in the direction PS; or the two forces PT, TS act in the directions PT, TS; fubflitute thefe two for that fingle one; therefore proceeding as before, the force of S a E ing at T : force of S acting at $P: \frac{1}{r r}: \frac{1}{r-y^{2}}$. And force
$r:=\frac{1}{r}: \frac{1}{r-y}$ Therefore ex aquo, force of S acting at T : force of S acting on P in direction $\mathrm{TS}:$: $\frac{1}{r^{3}}: \frac{1}{r-y^{i}}:: \frac{1}{r^{3}}: \frac{1}{r^{3}-3 r^{2} y}:: \frac{1}{r}: \frac{1}{r-3 y}:: r:$ $r+3 y$, nearly. And the force at $\mathrm{T}:$ difference of the forces $:: r: 3 y$; or $r: 3 y:: \mathrm{C}: \frac{3 y}{r} \mathrm{C}=$ difturbing force of P , acting in direction parallel to TS. And $\mathrm{PK}(y): \operatorname{PT}(a)::$ increafe of the difturbing force in direction PK $\left(\frac{y}{r} \mathrm{C}\right): \frac{a}{r} \mathrm{C}$, the addition of the centripetal force in direction PT. For when the difturbing force was $\frac{2 y}{r} \mathrm{C}$, there was no addition of centripetal force at T, but a diminution thereof; as appears by the following Corol.

Cor. I. The fimple difturbing force, whereby P is drawn towards S , is $=\frac{2 y}{r} \mathrm{C}$. And the diminution of centripetal force of P towards T , is $=\frac{v}{r} \mathrm{C}$. And the accelerating force at P in the arch PA , is $=\frac{z}{r} \mathrm{C}$. Putting $\boldsymbol{z}=$ fine of $2 \mathrm{PQ}, v=$ verfed fine of 2 PQ .

For let $x=\mathrm{PK}$, and draw KI perp. to PT; then by fimiiar triang'es, PT (a): PK (y) : : PK : PI : : force PK $\left(\frac{2 y}{r} \mathrm{C}\right)$: force in direction IP or $\mathrm{TP}=\frac{2 y y^{\prime}}{a r} \mathrm{C}=\frac{v}{r} \mathrm{C}$.

Alfo PI (a) : 1K (x) : : FK : KI : : force PK E

Cor. 2. The difurbing force at P is $=\frac{q}{59^{\frac{1}{2}}}$, q being the fine of the diftance from the quadrature, \mathbf{P} the moon, S the fun.
For (Prop. V.) $\mathrm{C}=\frac{t t r}{p p a} \gamma$, and $\frac{3 y}{r} \mathrm{C}=\frac{3 t t y}{p p a} \gamma=$ $\frac{39 \gamma}{178 \frac{3}{4}}$ (because $\frac{y}{a}=\frac{q}{1}$) $=\frac{q}{59 \frac{1}{2}} \gamma$ nearly.

Cor. 3. If S be the fun, P a body in the equinoctial of the earth; the difturbing force at P is $=$ $\frac{9 g}{12852000}$.

For when P is at the moon's orbit, the force is $\frac{q}{59^{\frac{1}{2}}} \gamma$; but $g=60 \times 60 \gamma$, or $\gamma=\frac{1}{3600} g$, therefore the force becomes $\frac{g g}{59^{\frac{1}{2}} \times 3600}$, and at the earth is $\frac{9 g}{59^{\frac{1}{2}} \times 60^{3}}$.

Cor. 4. If S be the moon, P a body on the equinotial of the earth. The difurbing force at P is $=$ $\frac{9 g}{28.80000}$.

For the general perturbating force was $\frac{3 y}{r} \mathrm{C}$, and here C mut be the centripetal force at the moon. Now the centripetal force of the earth, at the difftance of the moon is $\frac{1}{60^{\prime}}$. And the moon being 40 times lefs than the earth, the centripetal force

Sect. III. CENTRIPETAL FORCES:
of the moon, at the fame diftance, is $\frac{1}{40 \times 60^{2}} g^{3}$; put this for C , then the force of the moon upon the equinoctial, is $\frac{3 y}{r} \times \frac{g}{40 \times 60^{2}}=\frac{3 y g}{60 a \times 40 \times 60^{2}}$ $=\frac{q g}{20 \times 40 \times 60^{2}}$.

Cor. 5. The disturbing force of the fun, to that of the moon, upon the equinoctial; is as i to 4.46.

For there forces are as $\frac{1}{12852000}$ and $\frac{1}{2880000}$ or as 288 to 1285 , or as 1 to. 4.46 .

Cor. 6. If f be the apparent diameter, and d the density of the perturbating body. Then the difturbing force will always be as $d f^{\prime} y$.

For that force is $\frac{3 y}{r} \mathrm{C}$ or as $\frac{\mathrm{y}}{r}$. Let its diamen ter, $=b, \mathrm{M}=$ its quantity of matter. Then C is as $\frac{\mathrm{M}}{r r}$; that is, as $\frac{d b^{3}}{r r}$. Therefore the disturbing force is as $\frac{d b^{3} y}{r^{3}}$, or as $d y \times f^{3}$.

Cor. 7. If P be a point in the equator of the earth, S the fun.
The centrifugal force of P :
is to the perturbating force PT : :
As the Square of the earth's periodical time about the fun $p p$:
to the Square of the earth's periodical time about its axis th.
Let $t=$ time of revolution of the earth round its axis; then $t: 2 \pi a$ (circumference) : : $\mathrm{I}^{\prime \prime}$: $\frac{2 \pi a}{t}=$ arch defcribed in one fecond; and the verf
E?
ed
ed fine $=\frac{4 \pi \pi a a}{t t \times 2 a}=\frac{2 \pi \pi a}{t t}=$ afcent or defcent by the earth's centrifugal force. But forces are as their effects, whence $b: g:: \frac{2 \pi \pi a}{t t}$ (afcent) $: \frac{2 \pi \pi a g}{t t b}$ the centrifugal force itfelf. But the perturbating force is $\frac{a}{r} \mathrm{C}=\frac{a \mathrm{sg}}{r b}$. Whence the centrif. force : perturbating force : : $\frac{2 \pi \pi a g}{t t b}: \frac{a s g}{r b}:: \frac{2 \pi \pi}{t t}: \frac{s}{r}::$ $2 \pi \pi r: t t s:: \frac{2 \pi \pi r}{s}: t t$. But $\frac{2 \pi \pi r}{s}=p p$. For $\sqrt{ } 2 r s:$ $\mathrm{I}^{\prime \prime}:: 2 \pi r: p=\frac{2 \pi r}{\sqrt{2 r s}}$, and $p p=\frac{4 \pi \pi r r}{2 r s}=\frac{2 \pi \pi r}{s}$.

Cor. 8. Hence the body P is accelerated from the quadratures Q, Z, to the fiziges A, B; and retarded from the fiziges to the quadratures. And moves fafter, and defiribes a greater area, in the fiziges than in the quadratures.

PROP. XXVIII.

The fame things fuppofed as in the laft Prop. the linear error generated in P in any time, is as the difturbing force and Square of the time. And the angular error, feen from T , will be as the force and Square of the time direilly, and the diftance TP reciprocally.

For the motion generated in a given part of time, by any force, will be as that force; and in any other time as the force and the fquare of the time. The motion fo generated is the linear error of P , as it is carried out of its proper orbit, by the force $\frac{3 y}{r} \mathrm{C}$. And that error, as feen from T , is as the angle

Sect. III. CENTRIPETAL FORCES.

angle it is feen under ; and therefore is as that linear Fig. error, divided by the diftance TP; and therefore 26 . is as the force and fquare of the time, divided by the diftance.

Cor. I. The linear error generated in one revolution of P , is as the difturbing force and fquare of the periodical time, $\frac{3 c a}{r} t t$. And the angular error in one revolution is as the force and Square of the periodic time divided by the diftance.

Cor. 2. The mean linear error of P in any given time, will be as the force and periodical time, $\frac{a}{r} \mathrm{C}$. And the mean angular one, as the force and periodical time, divided by the difance.
For let the given time be 1 ; then t (time): $\frac{a \mathrm{C}}{r} t t$ (whole error) : : $\mathrm{I}: \frac{a \mathrm{C} t}{r}$, the error in the given time.

Cor. 3. The mean lineal error in any given time, is as TP and the periodical time of P directly, and the Square of the periodical time of T reciprocally. And the mean angular error, as the periodical time of P directly, and the Square of the periodical time of T reciprocally.

For (Prop. V.) C is as $\frac{r}{p p}$, and $\frac{a t}{r} \mathrm{C}$ is as $\frac{a t}{r} x$ $\frac{r}{p p}$ or $\frac{a t}{p p}$. And the angular error as $\frac{t}{p p}$.,

Cor. 4. In any given time, the lineal error is as TP and the periodical time of P directly, and the cube of ST reciprocally. And the angular error as the periodical time of P directly, and the cube of ST reciprocally. For (Prop. XVII.) $p p$ is as r^{3}, therefore $\frac{a t}{p p}$ is as $\frac{a t}{r^{3}}$.
Cor. 5. The linear error in a given time is as $\frac{a^{\frac{5}{2}}}{r} \mathrm{C}$, and the angular error as $\frac{a^{\frac{3}{2}}}{r} \mathrm{C}$.
For t is as a^{3}, and $\frac{a t}{r} \mathrm{C}$ as $\frac{a^{\frac{5}{2}}}{r} \mathrm{C}$.
Cor. 6. And univerfally, the angular errors in the whole revolution of any fatellites; are as the fquares of the periodic times of the fatellites directly, and the Squares of the periodic times of their primary planets reciprocally. And the mean angular errors are as the periodical times of the Satellites, divided by the Squares of the periodic times of their primary planets.

For by Cor. I. the angular error is as the force and fquare of the time divided by the diftance; that is, as $\frac{\mathrm{C} a}{r} \times \frac{t t}{a}$; that is, (becaufe C is as $\frac{r}{p p}$) as $\frac{t t}{p p}$. The reft is proved in Cor. 3 .

PROP, XXIX.

27. If a fpberoid AB revolves about an axis ST in free Space, which axis is in an oblique fituation to the Ppheroid, the Spberoid will, by the centrifugal force, be moved by degre sinto a rigbt poftion ab; and afterwards by its libration, into the oblique poftion a β, And then will return back into the pofitions ak, AB ; and fo vibrate for ever.

Let C be the center of the fpheroid; D the center of gravity of the end ICLB; E that of the end ICLA; Dd, Ee perp. to ST. Then the centrifugal force of the end $C B$, fuppofing it to act wholly

Sect. III. CENTRIPETAL FORCES.

wholly at D , in direction $d \mathrm{D}$, having nothing to Fig. oppofe it, will move the end CB from B towards 27 . b, with a force which is as (d. And at the fame time, the centrifugal sorce of the ead CA, acting in direction $e \mathrm{E}$, will move the end CA from A towards a, confpiring with the motion of the end CB ; by which means it will by degrees come into the pofition $a b$. And then by the motion acquired, it will come into the pofition $\alpha \beta$, making the angle $\mathrm{SC} \alpha=\mathrm{SCB}$. And the motion being then deftroyed, it will return back, by the like centrifugal forces, acting the contrary way; and be brought again into the pofitions $a b$, and $A B$; and continue to vibrate thus perpetually.

Cor. Hence if the axis of the earth is not precijely the Same as the axis of its diurnal rotation; the earth will bave fuch a libration as is bere deforibed, but exceeding fmall. This is fup ofins it a folid body; but if it was a fluid, it would by the centrifugal force, form itfelf into an oblate fpberoid.

P R O P. XXX. Prob.

If a globe APBQ in free fpace, revolve about 28. the axis SCT , in direction ADB ; and if any force applied at V , the ent of the radius CV , acts by a fingle impulfe in direction VG perp. to CV, in the plane VCD. To find the axis about wobich the globe Ball afterwards revolve.

Suppofe the great circle VBQA perp. to the line of direction VG; and if VH , VI be 90 degrees; it is plain, if the firf motion was to ceafe; the globe by the impulfe at V , would revolve round the axis IH , which by the firt motion was round the axis PQ . Therefore by both motions together it will move round neither of them. Now E 4 fince

Fig fince a point of the furface moving with the great28. eft velocity about ST, will move along the great circle ADB; and a point having the greateft velocity about IH, moves along the great circle VDE. Therefore a point that will have the greateft velocity, by the compound motion, will alfo be in a great circle paffing thro' D . Therefore in the great circles DB, DE, take two very fmall lines $\mathrm{D} r$, Do, in the fame ratio as the velocities in AD , and VD; and compleat the parallelogram Dopr. 'Tien thro' D and p draw a great circle $\mathrm{KD} p \mathrm{~L}$; and a point having the greateft motion, arifing from a componition of the other two motions, will move along $\mathrm{KD} p \mathrm{~L}$. Therefore finding F, \mathbf{R} the poles of the circle KDpL , FR will be the new axis of revolution, or the axis fought. And the velocity about the axis FR will be proportional to $\mathrm{D} p$; VBQA being always fuppofed perp. to GV, or to the plane DVC.

Note, if you fuppofe an equal force applied at E , in direction contrary to GV , it will by that means keep the center C of the globe unmoved, and will likewife generate twice the motion in the globe.

Cor. . I. The greater the force is that is applied to V , the greater the diftance PF is, to which the pole is'removed. And if feveral impulfes be made fucceffively at V , when V is in the circle APB , the pole F will be moved further and furtber towards H , in the circle APB.

For feveral fmall forces or impulfes have the fame effect as a fingle one equal to them all.
29. Cor. 2. If the force act at P , in direction perp. to the plane CPB ; and Dr , Do be as the velocities along DB and DQ . The great circle KDL. (pafing tbro' D and p) is the path of the point D ; and its pole F , or axis of revolution RF; the pole being tranfated

Sect. III. CENTRIPETAL FORCES.
from P to F . And if the impulfe be exceeaing fmall, Fig. PF will alfo be exceeding fmall.

Cor. 3. If the force at P always acts in parallel directions, whilft the globe turns round. The pole zeill make a revolution in a fmall circle upon the jurface of the globe, in the time of the globe's rotation, and the contrary way to the globe's motion.

For let a fingle impulfe at P tranflate the pole to \mathbf{F}; and afterwards when the globe has made half a revolution, and the point P is come to p; then if a new impulfe be made at F , the pole will be tranflated to p which is now P; that is, it will be moved back to its firft place on the globe. So that in any two oppofite points of rotation, the place of the pole is moved contrary ways, and fo is carried back again the fame diftance. And fince the globe revolves uniformly, if the force act uniformly, it will move the pole all manner of ways, or in all manner of directions upon its furface; that is, it will defcribe a circle, which will end where it begun. And in defcribing this polar circle, the motion will be contrary to the motion of the globe; for fuppofe PFB an immovable plane. If the globe ftood ftill, the pole would move in a great circle, in the plane PFB. But fince all the points of the globe which come fucceffively to the plane PB , are not yet arrived at it, but are fo much further fhort of it, as PF is greater; 'tis evident all thefe points will lie on this fide the plane PB. And as any fixed point will defcribe a circle on the moving globe, contrary to the motion of the globe; fo will a point that is not fixed, but moving in the plane PFB, likewife deferibe a circle (or fome curve) contrary to the motion of the globe. Or fhorter thus, fuppofe the globe to ftand ftill, and the direction of the force to move backward, then the relative motion will be the fame as before; and then

CENTRIPETAL FORCES:

Fig. then the pole F will move backward too, as it will 29. follow the force, being at right angles to it.

Cor. 4. Since the pole by one impulfe is tranlated 10 F ; the nerv pole F is therefore another point of the material globe, difinct from P. And the particle P tbat was before at reft, will nowe revolve about the paricle F at ref.

For the new pole F is that particle of the globe which happened to be revolving in F, when the impulfe was made at P . The matter of the great circle ADB dces not come into the circle KDL, but only the point D of it. For when the force is imprefed, the other particles M, N, by the compound motion, will be made to revolve in the directions $\mathrm{M} m, \mathrm{~N} n$, parallel to $\mathrm{D} p$; and therefore will defcribe leffer circles about F; whilft only D defcribes the great circle KDL.

Cor. 5. Wbat is demonfrated of a fphere is true alfo of an oblate fpberoid, whofe axis is PQ ; and the force imprefled at P , alting in direction perp. CPB , or parallel to CD the radius.

Cor. 6. But if the force at P alt in direction contrary to the foregoing (as in cafe of an oblong fpheroid); the pole of rotation will be moved from P towards A, contrary to the way of the other motion.

Cor. 7. And in general the pole P will always be moved in a direction perp. to that of the power; and towards the Jame way as the Jpheroid revolves.

Cor. 8. Hence after every balf rotation of the globe round its axis, the places upon the globe change their latitude a little; which, after an entire rotation return to the fame quantity. But this variation is fo trifing, as to come under no ol.jervation.

This is evident, becaufe the pole is altered; and
in all places, except in the great circle FCR.

P R O P. XXXI. Prob.

Let AB be an oblate fpberoid, whofe axis is PC ; 30 . and let it revolve round that axis, in the order ADB , which is its equinocial; and if any force act at P_{2} in direEEion PG perp. to PC , and in the plane $\mathrm{P} \odot \mathrm{C}_{\text {. }}$ which moves flowly about, in the order ADB. To. find the motion generated in the Spheroid.

Let EL be an immovable plane like the ecliptic, in which the center C of the fpheroid always remains. ON another plane parallel to it. Erect CM perp. to thete planes; and make the angle $M C N=$ the angle $\mathrm{B} \bumpeq \mathrm{C}$, in which the equinoctial $\mathrm{B} \bumpeq$ cuts the ecliptic CL. Suppofe the fpherical furface OVN to be drawn, whofe pole is M ; and produce $C P$ to cut it at R, in the circle ORN. Then PCD and RCM are in one plane, and both of them perp. to $\mathrm{P} \approx$ and PrC . Now to find the motion of the axis of the fpheroid. Here OVN is the upper fide of the furface.

This Prop. differs from the laft in feveral refpects. The laft Prop. regards only the motion of the pole upon the furface of the globe, and that is caufed by a motion which is generated in the globe itfelf. But in this Prop. we confider the motion of the axis CR in the fixed fpherical furface OVN; which always proceeds in one direction, as long as the moving force keeps its pofition. In the laft Prop. the motion of the globe round its axis is performed in a very fhort time; but here the revolution of the force, in the moving plane $\mathrm{P} \odot \mathrm{C}$, is a long time in its period.

Now by the laft Prop, Cor. 7. the force PG will always move the axis of rotation CPR in a direction motion of R will be directed from R towards M . And when that plane comes to the pofition $\mathrm{PF} \odot \mathrm{C}$, the motion of R will be directed to fome place between N and V . And when it is got to the tropic D , then R 's motion is directed along the circumference RV; for then P $\odot C$ coincides with CRM. But when $\mathrm{P} \odot \mathrm{C}$ arrives at f, the motion will be directed from R to fome point t without the circle: And laftly, when $\mathrm{P} \odot \mathrm{C}$ is at the other interfection r, beyond B; the motion of R will be directed to m oppofite to M . The refult of all which is, that the pole R will defcribe fuch a curve as R1234; and then the fame force begins again at $乞$; which being repeated, another fimilar figure 45^{6} is defcribed by R; and fo on for more. The fame force I fay is repeated, for when the plane $P \odot C$ comes on the other fide of the giobe, the force acts the contrary way, and therefore 'tis all one as if it acted on the firft fide of the globe.

It muft be obferved, that as R moves thro' ${ }^{1234,}$ the interfection \approx gradually moves towards E. And as to the force PG, it may be fuppofed variable ${ }_{2}$ at different pofitions of the plane $\mathrm{P} \odot \mathrm{C}$. And according to the quantity of force in the feveral places, different curves (1234) will be defcribed.

Cor. 1. Hence it is evident, that the inclination of the planes ADB and ECL , is greateft when $\mathrm{P} \odot \mathrm{C}$ paffes tbro \leadsto and r. And leaft when it paffes tbro' the tropic D. And that the inclination decreafes froms the node \approx to the tropic D , and increafes from the tropic to the node.

For when $P \in C$ is in \bumpeq, R is fartheft from M; Fig. but when it is in D, R is at 2 , and its direction 30. is parallel to R_{4}, and then 2 M is leaft.

Cor. 2. After a revolution of the plane $\mathrm{PF} \odot \mathrm{C}$ (in which the force always acts), the inclination comes to the very fame it was at firft.

For at any two points F, f, equidiftant on each fide from the tropic; the force is directed contrary ways, from and to the circle RV; and therefore the motion, in the curve R_{1234}, being alfo equal and contrary, from and towards RV, they mutually deftroy one another; and therefore after a revolution, or rather half a revolution, the pole R is brought back to the circle RV, and then the angle RCM is the fame it was at firft.

Cor. 3. The motion of the pole R , reckoned in the circle OVN , is always from R towards V , then tbro., N, O, and R .

For tho' the motion of R towards and from M , in the line $\mathrm{M} m$, in one revolution, is equal both ways; and fo R is always brought to the circle again; yet the motion confidered along the circle is always in the order RVN. Thus it goes thro' the curve 123 to 4 , fo that after half a revolution of $\mathrm{P} \in \mathrm{C}$, it is advanced forward in the circle $R V$, the length R_{4}.

Cor. 4. The motion along the circle is fometimes fafter and fometimes llower. At 2 it moves fafteft of all; at R and 4, it moves lowef, or rather is ftationary for a moment.

Cor. 5. The pole R , and the nodes move the contrary way about, to what AB revolves.

Cor. 6. If the force PG ftands fitl, the pole \mathbf{R} swill fill move backwards as before; and that in a

Fig. right line, or ratber, a great circle. And if PG moves 30. backward tbro' BDFA; the pole R will fill go backward; but then the curve R24, will be concave towards M , like 87 R , being contrary to the other where the force moved forward.

Cor. 7. But in an oblong fpheroid, where the force alts in direciion GP, quite contrary to the other; \mathbf{R} will. defcribe the curve R 78 , without the circle ORV; every particle of it in a contrary direction to thefe of R24. And therefore the pole R, and the nodes r and \bumpeq will move the fame way about as ADB revolves, and contrary to what they do in an oblate. fpheroid.

For the force being directed the contrary way ; of confequence the motion muft be fo too.

Cor. 8. And in an oblong fpheroid, if the force GP move the contrary way about; yet the pole R will fill move forward. And the curve defcribed by R , woill bave its convexity the contrary way.

Cor. 9. Hence if the quantities and propertions of thefe forces, in different places be known; it will not be difficult to delineate the curve R1234, upon the spberical furface OVNM.

P R O P. XXXII. Prob.

31. If a planet (or the moon) move in the orbit ATE t. round an immovable center C , webofe plane is inclined to the plane of the ecliptic AQE ; and a force acts upon it in lines perp. to GZ, and parallel to the ecliptic, dirested always from the plane GZ to eitber fide. To find the motion of the nodes A, E; and the variation of the orbit's inclination PAO.

Let ATZE be half the orbit raifed above the ecliptic AQ, AE the line of the nodes; $\mathrm{T}, \mathrm{t}_{\mathrm{k}}$ the

Sect. III. CENTRIPETAL FORCES.

the tropics. Draw CM perp, to the ecliptic AQE, Fig. and CR perp. to the orbit ATE. Kound M as 31. a pole defcribe a fpherical furface RVNX; then RC will be the axis of the orbit, and MC of the ecliptic, or circle AQE. Thro' the points T, C, M , draw the plane RMC; and thro' A, $\mathrm{C}, \mathrm{M}_{2}$ another plane cutting the circle RNF in \mathbf{X} and \mathbf{H}; then RF is perp. XH, and the circle RNX parallel to GEQ. Note, RNX is the upper fide of the furface.

Let the planet be at P, and let P_{2} be the face it defcribes in any fmall time, and the line PI the fpace it would be drawn thro' in the fame time, by the force acting from the plane MGZ. Compleat the parallelogram P_{12}, and P_{3} will be its direction by the compound force. Now as the line P_{1} is parallel to the ecliptic, 'tis plain the point 3 will be below the plane of the orbit; and the plane $\mathbf{C P}_{2}$ will be moved into the pofition CP_{3}, revolving about CP; confequently the axis RC will be moved in a direction perp. to CP. And the pole \mathbf{R} will be moved to fome point between F and H. This being duly attended to, the motion of the pole R will be known for all the places of P in the orbit GATZ. For about G the motion of \mathbf{R} is directed perp. to $\mathrm{M} n$; at A it moves perp. to MX, or in direction RM. At T it moves parallel to MH , or in the curve RV. Approaching to Z , it moves perp. from $M n$. So that in the paffage of the planet P, from G to Z, thro' GAPTZ; the pole R of its orbit, moves thro' the curve RI234. But in the other half of the orbit $\mathrm{ZE} t \mathrm{G}$, as the force is directed the contrary way from the plane GZMN, the pole R will return back at 4 , and defcribe a fimilar curve 45678 . So that when the planet P has made one revolution, the pole of its orbit R will be found at 8. But in this pofition of the nodes, the point 8 will be within the fphe- ing defcribed in all directions in refpect of the line $n \mathrm{~N}$; the points $\mathrm{R}, 4$, will be equidiftant from $n \mathrm{~N}$, and likewife 4, 8, for the fame reafon.
Now fuppofe the force and the plane GŻN n to to revolve about the axis CM in the order GATE. Then after it is come to fuch a pofition, that the afcending node A is as far on the other fide of G, fuppofe at a; then the pole R will be as far on the other fide of V , fuppofe at r; and being alfo as far from $\mathrm{N} n$, on the fame fide; the curves (12468) will approach VH there, by the fame degrees as they receded from it at RV. And therefore the pole R will by degrees be brought to the circle again. Thus in every two correfpondent points on each fide V, the forces and their effects balance one another, and R will be at the fame diftance from the circle RVH. And therefore after half a revolution of the plane $G Z$ to the nodes, the angle RCM , and confequently the inclination of the orbit, comes to the fame as at firf. And likewife as the pole R moves forward or backward in the circle RVH; the motion of the nodes A, E, will be forward or backward.

Cor. I. In this pofition of the nodes at A and E , the inclination of the orbit ATE will be diminibed every revolution of P . But on the oppofite fide at a, the inclination increafes every revolution of P .
For the points 4,8 , come nearer and nearer to M , and the contrary at r.

Cor. 2. When the nodes are at A, E; the inclination decreafes; when the planet is in GT or $\mathbf{Z} t$; and increafes in TZ and $t \mathrm{G}$.

For \mathbf{R}^{\prime} moves to 3 , whilf P moves thro' GT. At 3 it is at its neareft diftance to M; from 3 to

Sect. III. CENTRIPETAL FORCES.

Cor. 3. When the planet is in GA and ZE, the nodes go forward. But in AZ and EG, they go backward.

For whilft \mathbf{R} paffes thro' RI_{1}, its motion is forward, viz. from \mathbf{R} toward n, and at 1 where it moves parallel to RM, it is ftationary ; that is, when P is in A . Thro' ${ }^{1234}, \mathrm{R}$ moves backward, or towards V; and then P is in AZ .

Cor. 4. In general, the nodes are always regreffive, except when P is between a node, and its neareft quadrature; and then they are progrefive, wherever the nodes are fituated.

Cor. 5. The nodes go faftef back when the planet is in T and t.
For then R is at 3 and 7 .
Cor. 6. The inclination varies mof, when P is at A and E .
For then \mathbf{R} is at \mathbf{I} and 5 .
Cor. 7. And from the various fituation of the nodes, and the place of P , it may eafly be determined, when the inclination increafes or decreafes, in any cafe.

Cor. 8. Hence if the quantities of thefe forces were known, it would not be difficult to delineate the motion of the pole R , upon the fp berical furface RXFH; and at any time to find the inclination, and place of the node.

Cor. 9. And to find the nature of the curve R_{1234} defcribed by the pole R. Suppofing the force directed always to the fun; and to be as the diftance of \mathbf{P} from the plane GZ.

Let RDB be the curve, and let the tangent $t \mathrm{DT} 32$. revolve about the curve RDB , beginning at R , fo moves thro' its orbit ATZEt. It is plain this is one property of the curve RDT.

Now fince the fun's rays fall at the fame obliquity upon all parts of the plane ATQ, therefore the force to draw P in a direction parallel to thefe rays, being the fame at equal diftances from the plane GZ, and always as the diftance ; therefore by the refolution of motion, the diftance that P is drawn perpendicularly from the plane of its orbit, will alfo be as that diftance; and that is as the variation of the orbit's inclination. Therefore if P , infead of moving to 2 move to 3 , then the force at P or PB (fig. 31.) will be as the angle $2 \mathrm{P}_{3}$: fuppof33. ing the fun's diftance from the node to remain the fame, during one revolution of P .
But when the fun or the force alters its pofition, 34. it will be greater or lefs on that account, in proportion to the fine of OL (where OL is perp. to AL), and that is as the fine of AO, the diftance from the node, the angle A being given. From hence it follows that univerfally, the force acting on P will be always as $B P \times S$.AO; that is, as S.GP \times S.AO (fig. 31.); that is, as the fine of the diftance of P from the quadratures, and the fine of the diftance of the fun at O from the node.

Now let us find the nature of the curve R_{1234}, 32. fuppofing $A O$ to remain the fame for one revolution of P. Put RA $=x, A D=y, R D=z$. Since by the generation of the curve, the angle $\mathrm{AD} t=\operatorname{arch} \mathrm{GP}$, and the force is as the fine of GP or of $A D t$, and $\frac{\dot{x}}{\dot{z}}=$ S.ADt. Alfo it is plain, the increment of the curve at D is as that force ; therefore $\frac{\dot{x}}{\dot{\mathcal{z}}}$ is as \dot{z}. And fince in paffing thro' the

Sect. III. CENTRIPETAL FORCES.

particle of the curve \dot{z}, the line $\mathrm{D} t$ is fuppofed to Fig. change its direction uniformly, therefore the angle 3^{2}. of contact is given; whence \dot{z} or $\dot{\mathcal{z}}$ is as the radius of curvature, or as $\frac{\dot{z} \dot{y}}{\dot{x}}$; that is, $\frac{\dot{x}}{\dot{z}}$ is as $\frac{\dot{z} \dot{y}}{\ddot{x}}$, or $a x \ddot{x}=\dot{z}^{2} \dot{y}$ (\dot{z} being given), and the fluent is $\frac{a \dot{x}^{2}}{2}=y \dot{z}^{2}$, and $\dot{x}: \dot{z}:: \sqrt{ } y: \sqrt{\frac{1}{2}} a::$ as the fubtangent : to the tangent; which is the property of the cycloid, $\frac{1}{2} a$ being $=C B$, the diameter of the generating circle.
Now at different diftances of O from the node, the cycloid defcribed will be greater in proportion to the fine of AO (fig. 31.); and even in the fame cycloid, the latter part will be greater than the former part, as AO grows greater; all the parts of it increafing as the fine of AO increafes; and the greateft cycloid will be when A is in the quadratures; and the leaft when in the fyziges, where it is reduced to nothing.

Schotium.

From the foregoing folution, thefe obfervations may be made.

1. Tho' the curve R24 has been determined to be a cycloid, yet it is nearer an epicycloid. For at R it fets off nearly in a direction perp to GZ, and during its generation (that is, whilft P performs a femirevolution) the point A moves towards G; and fuppofing the force at O to be fixed, the laft particle of the curve at 4 would be parallel to that at R . But as O really moves forward, fome number of degrees, fuppofe 14, and continues to do fo, all the femirevolution; therefore every particle of the curve will have other directions in its defcription, being more curve than F 2 before;

Fig. before; and at laft the tangents at R and 4 , will 32. make an angle of 14 deg . which is the fame as if an epicycloid was defcribed on the convex fide of a circle, going thro' an arch of it equal to 14 degrees.
2. Thus the curve defcribed by \mathbf{R} would be nearly an epicycloid, when the force at O is every where of the fame quantity; yet as O moves about, the force will increafe and decreafe in proportion to the fine of AO ; therefore, if you will fuppofe fuch an epicycloid defrribed as above-mentioned, and moreover imagine the radius of the generating circle to fwell or increafe, in the fame ratio as the S.AO increafes; then fuch an epicycloid will nearly reprefent the curve defcribed by R. For then every part of it will be greater or lefs, in proportion to the force that generates it. But enough of this. All that I fhall add on this head is the folution of the two following problems, upon account of their curiofity, as depending on the foregoing principles.

P R O P: XXXIII. Prob.

To find the difurbing force of Fupiter or Saturn, upon the earth in its orbit; baving that of the fun upon the moon given.
26. Let the matter in the fun and Jupiter be as m to 1. E, I, L the periodic times of the earth, Jupiter and the moon. A, B, the diftances of the earth and Jupiter from the fun. D the moon's diftance from the earth. C, c, the centripetal forces of the fun and Jupiter.

Then (by Prop. XXVII.) the difturbing force of S upon P, is $\frac{3^{P} \mathrm{SK}}{\mathrm{ST}}$ or as $\frac{\mathrm{PT}}{\mathrm{ST}} \mathrm{C}$. Therefore if S be the fun, and P the moon, the difturbing force

Sect. III. CENTRIPETAL FORCES.

 is $\frac{D}{A} C$; but if S be Jupiter, P the earth, T the ${ }_{26 \text {. }}^{\text {Fig. }}$ fun; then the force is $\frac{A}{B} c$. That is, the fun's difturbing force upon the moon, is to Jupiter's difturbing force upon the earth; as $\frac{D}{\mathrm{~A}} \mathrm{C}$ to $\frac{\mathrm{A}}{\mathrm{B}^{c}}$; or as DBC to A^{2} c. But (Cor. 2. VII.) $\mathrm{C}=\frac{m}{\mathrm{AA}}$, and $c=\frac{\mathbf{I}}{\mathrm{BB}}$. Therefore the fun's force upon the moon, is to Jupiter's upon the earth; as $\frac{\mathrm{DB} m}{\mathrm{AA}}$ to $\frac{\mathrm{AA}}{\mathrm{BB}}$, or as $\mathrm{DB}^{\prime} m$ to A^{4}; that is (Prop. XVII.), as $\mathrm{DI}^{2} m$: $A E^{2}$. That is, the fun's difturbing force upon the moon, is to Jupiter's difturbing force upon the earth; as $\mathrm{D} \times \mathrm{II} \times m$, to $\mathrm{A} \times \mathrm{EE}$. But that of the moon is known, and confequently that of Jupiter. And if for I and m, we put Saturn's periodic time, and quantity of matter; Saturn's difturbing force will be known.Cor. 1. The angular errors generated in the moon by the fun, are to the errors generated in the earth by 7 fupiter in the fame time, $::$ as IIL $\times m$, to E^{3}.

For (Prop. XXVIII. Cor. 2.) thefe errors are as the forces and periodic times, divided by the diftances. Therefore the fun's effect to Jupiter's, is as $\frac{\mathrm{D} \times \mathrm{II} \times m \times \mathrm{L}}{\mathrm{D}}$ to $\frac{\mathrm{A} \times \mathrm{E}^{2} \times \mathrm{E}}{\mathrm{A}}$; or as IILm to E^{3}.

Cor. 2. Hence the error generated in the moon by the fun, is to the error generated in the earth by $7 u$ piter; as 11230 to 1 , and to that generated by Saturn, as 196076 to 1 .

For put $\mathrm{I}=4332 \frac{1}{2}$ days, $\mathrm{L}=27 \frac{1}{3} \frac{m}{}=1067$,
$\begin{array}{rl}\mathrm{E}=365 \frac{\mathrm{x}}{4} ; \text { then } \frac{\mathrm{I}^{2} \mathrm{~L} m}{\mathrm{E}^{3}}=11230, \text { And putting } \\ \mathrm{F} & \mathrm{I}\end{array}$

Fig. $I=10759 \frac{1}{4}$, and $m=3021$, for Saturn; then 26. $\mathrm{I}^{2} \mathrm{~L} m$

$$
\frac{\mathrm{I}^{2} \mathrm{~L} m}{\mathrm{E}^{3}}=196076
$$

Cor. 3. The force of Saturn to the force of Fupiter to dijfurb the earth, is as $\mathbf{1}$ to $\mathbf{1} 7 \frac{1}{2}$.

Cor. 4. The motion of the nodes of the earth's orbit by 'fupiter's action, in 100 years, is $1 \mathrm{o}^{\prime} 20^{\prime \prime} \frac{1}{2}$. And by Saturn's, $35^{\prime \prime} \frac{2}{3}$.

For the motion of the moon's nodes in a year is $19^{\circ} 20^{\prime} 32^{\prime \prime}$, or $69632^{\prime \prime}$; this divided by 11230 gives $6^{\prime \prime} .2005$, multiplied by 100 , is $620^{\prime \prime} .05$, which increafed in the ratio of the cofine of inclination of Jupiter's orbit ($\mathrm{I}^{\circ} 19^{\prime} 10^{\prime \prime}$), to that of the moon's ($5^{\circ} 8^{\prime} \frac{1}{2}$), produces $10^{\prime} 22^{\prime \prime} \frac{1}{2}$. Which diminifhed in the ratio of I to $17 \frac{1}{2}$, gives $35^{\prime \prime} \frac{2}{3}$ for Saturn.

Cor. 5. The motion of the eartb's aphelion by the attion of 7upiter, is $21^{\prime} 44^{\prime \prime}$ in 100 years, in confequentia, And by Saturn, $\mathbf{I}^{\prime}{ }^{1} 4^{\prime \prime} \frac{1}{2}$.

For the motion of the moon's apogee is $40^{\circ} 40^{\prime}$ $43^{\prime \prime}$, or $146443^{\prime \prime}$ in a year. This divided by 11230 gives $13.04^{\prime \prime}$; which multiplied by roo, gives $1304^{\prime \prime}$ or $21^{\prime} 44^{\prime \prime}$. And divided by $17 \frac{1}{2}$, gives $74^{\prime \prime} \frac{1}{2}$.

P R O P. XXXIV. Prob.

35. To find the variation of inclination of the earth's orbit, by the action of Fupiter in 100 years; and the like for Saturn.

Let $\gamma 69$ vo be the ecliptic, or plane of the earth's orbit; GFH the orbit of Jupiter; G Jupiter's afcending node; $\mathrm{E}, \mathrm{I}, \mathrm{Q}$, the poles of the ecliptic, Jupiter's orbit, and the equator, refpectively; ECK a circle parallel to GF; and $\mathrm{D} m \mathrm{Q}$ a circle parallel to the ecliptic. The pole Q here moves regularly along the circle QlD, by the preceffion

Sect. III. CENTRIPETAL FORCES.

 ceffion of the equinoxes; which circle is no way Fig. affected or altered by Jupiter's action; becaufe Ju- 35 . piter cannot be fuppofed to have any force to move the equinoctial points, or alter their regular motion. But he has a power of acting upon the whole body of the earth, and altering its orbit, and confequently the pole E of the ecliptic; which pole is therefore made to move along the circle ECK. Therefore we mult fuppofe the orbit of Jupiter fixed, and confequently the pole I, and circle ECK. And now we have to compute the motion of E along the circle ECK.The preceffion of the equinoxes in
100 years is - - $1^{\circ} 23^{\prime} 20^{\prime \prime}$ And (by the laf prob.) the motion of Jupiter's nodes in 100 years is $10^{\prime} 22^{\prime \prime \frac{1}{2}}$ or $622^{\prime \prime \frac{x}{2}}$ Jupiter's afcending node G (1755,

Inclination of Jupiter's orbit $1^{\circ} 23^{\prime \prime} \frac{1}{3}$, and EIC $=10^{\prime} 22 \frac{1}{2}$. Upon E a let fall the perp. Co; then E 0 is the decreafe of EQ or $\mathrm{E} a$, which (Prop. XXXII.) is the fame as the decreafe of the inclination of the planes of the ecliptic and equinoctial.
In the triangle EIC, by reafon of the very fmall angle EIC, we fhall have as rad : S.IC ($\mathrm{I}^{\circ} 19^{\prime} 10^{\prime \prime}$) $::$ angle EIC $\left(622^{\prime \prime} \frac{1}{2}\right): E C=\frac{\text { EIC } \times \text { S.IC }}{\mathrm{rad}}=$ 14".3. To the angie GEQ ($8^{\circ} 20^{\prime}$), add $\mathrm{QE} a\left(\mathrm{r}^{\circ}\right.$ $23^{\prime} \frac{1}{3}$), then $a \mathrm{EG}$ or $0 \mathrm{EC}=9^{\circ} 43^{\frac{1}{3}}$. Then in the very fmall right lined triangle ECo, rad : EC: :
cof. $\mathrm{OEC}\left(9^{\circ} 43^{\prime \frac{1}{3}}\right): \mathrm{E}=\frac{\mathrm{EC} \times \operatorname{cof} . \mathrm{oEC}}{\mathrm{rad}}=14^{\prime \prime} .1 \%$.
EIC \times S.IC \times cof. oEC
Or $E_{0}=\frac{\mathrm{EIC} \times \mathrm{A}}{\mathrm{rad}^{2}}$, the decreafe of inclination of the ecuinoctial in 100 years by the F 4 action.

Fig. action of Jupiter. And this decreafe will amount 35. to a minute in 425 years.

If the fame computation was applied to Saturn, putting EIC $=35^{\prime \prime} \frac{2}{3}, \mathrm{IC}=2^{\circ} 30^{\prime} 10^{\prime \prime}$, , $\mathrm{ECC}=$ $\left(21^{\circ} 21^{\prime} 36^{\prime \prime}+1^{\circ} 23^{\prime \frac{1}{3}}\right) 22^{\circ} 44^{\prime} 5^{\prime \prime}$; the decreafe by Saturn will be $1^{\prime \prime} .44$. Therefore the decreafe by both will be $15^{\prime \prime} .54$; which will be a minute in 3^{86} years.

Cor. 1. The inclination will decreafe till E and a be at their neareft diftance in the two circles, which will be above 6000 years; and then it will increafe again. It bas likerwife been decreafing for above 8000 years.

For the diameters of the circles EK and DQ , being about as it to 17. And the angle IEQ being $81^{\circ} 40^{\prime}$, and the difference of the motions of E and Q being $I^{\circ} 13^{\prime}$; it will decreafe nearly as many centuries as is the quotient of $8 \mathrm{I}^{\circ} 40^{\prime}$ divided by $1^{\circ} 13^{\prime}$, which is 67 . Alfo the fupplement $98^{\circ} 20^{\prime}$ divided by $1^{\circ}{ }^{1} 3^{\prime}$, gives 81 centuries, it has been decreafing.

Cor. 2. But the increafe or decreafe for every century is not $15^{\prime \prime} .54$, as determined in this particular β_{1} tuation. For as it approaches to its maximum or minimum, it varies very flow, and at thefe places is at a fland for a long time.

Cor. 3. The inclination can never be lefs than 20° $50^{\prime} 54^{\prime \prime}$; nor greater than $26^{\circ} 7^{\prime} 20^{\prime \prime}$.

For the neareft and greateft diftances of the two circles EK, DQ amount but to thefe. And there muft be many revolutions, before they can light upon thefe two points, if the world can be fuppofed to exift fo long.

Scholium.

The difturbing forces of Jupiter and Saturn here made ufe of are derived from that of the fun up-

Sect.III. CENTRIPETAL FORCES.

 on the moon; but thefe forces are really more than Fig. are here determined. For in calculating the dif- $35 \cdot$ turbing force of the fun (by Prop. XXVII.), the forces upon T and p are as $r r$ to $r r+2 r y+y y$; but by reafon of the great diftance of the fun, the part $y y$ is left out, as being extremely fmall. But in the cafe of Jupiter and Saturn it is otherwife, and therefore $y y$ muft be taken in. Whence the difturbing force muft have an additional increafe, which is as $2 r y$ to $y y$, or as $2 r$ to y, which in Jupiter is as 10 to I, and in Saturn as 19 to I. Therefore Jupiter's difturbing force muft be increafed by $\frac{1}{10}$ th, and Saturn's by $\frac{1}{19}$ th ; which being done, their effects will be proportional, and the decreafe of inclination of the ecliptic in 100 years, by Jupiter and Saturn will become $15^{\prime \prime} .45$, and $\mathrm{I}^{\prime \prime} .5 \mathrm{I}$; ard by both $16^{\prime \prime} .96$ or $17^{\prime \prime}$ nearly; which will mount to a minute in 353 years.But if the obfervations of the antients can be depended on, the obliquity decreafes fafter than this. For by the obfervations of Arifarcbus, Eratofthenes, Hyparcbus, Ptolemy, and $T^{\text {Bheon, }}$, the obliquity was found to be $23^{\circ} 5 \mathrm{I}^{\prime}$. And none of them lived 300 years before Chrift, and two of them after. So that in little more than 2000 years, there is a difference of 22^{\prime}; which is more than 'a minute in 100 years, and is more than three times as faft as we have here determined it.

I fhall now proceed to fome things of another kind, relating to centripetal forces; which as far as I can find, have not been meddled with by any body before.

> P R O P. XXXV. Prob.

If the circle GDFE be moved along the right line 36. AB , whilft it turns round its axis; to find its motion upon a borizontal plane.

Suppofe the circle inlined in any given angle to the horizon, the line of direction $A B$ being at firf

Fig. in its plane; and let it move round its axis $\mathbf{C P}$, 36. which is perpendicular to its plane, with any velocity. Let O be the center of ofcillation.

Now the circle will endeavour to defcend by its gravity, in the fame manner, as the fingle point O would do. Therefore fuppofe the point \bar{F} to defcend thro' Ff in a moment of time, and that F is transferred to I in the fame time. Then if the parallelogram $\mathrm{F} f \mathrm{I}$ be compleated, the point F by the compound motion, will move along Fn. By this means CP, the axis of revolution, will be transferred to the pofition $\mathrm{C} q$, inclining more towards B. But when the circle has made half a revolution, and G is come to the place F; the points in F, proceeding in the tract $F n$, will move the axis Cq forwards, as before; that is (by the turning of the circle) it will throw it into its former place CP. So that during a revolution, the axis is thrown contrary ways in all the oppofite points, and fo is always reftored back to its firt place in regard to the plane. Therefore the circle always revolves about the axis CP , whilft CP continually inclines more and more forward; that is, the plane of the circle continually alters its pofition; and the variation of its pofition is known from the lines $\mathrm{FI}, n \mathrm{I}$; and is equal to the angle $n \mathrm{FI}$ or PCq. And fince the circle endeavours to move along a line which is in the plane $n \mathrm{FG}$, it will no longer go along $A B$, but deviate from it into a new traft, which is now to be found.

It may be convenient to imagine the circle to be a poligon with an infinite number of fides. Then let KL be the horizon, Mg the plane of the the circle, g being a point in the right line $A B$; let the next point of the circle (or angle of the poligon) defcend to the horizon, thro' the very fmall fpace $r t$; then in the right angled triangle $t r g, S$. inclination (igr) : tr or $n \mathrm{I}$ (which is as S. $n \mathrm{FI}$): :
 moved thro' $\mathrm{G} g$ in the fame time, then from g (in the line AB) fetting off $g t=\frac{\mathrm{S} n \mathrm{FI}}{\mathrm{S} \text {.inclination }}$, then t will be a point in the curve G t, thro' which the circle will pafs. After the fame manner it will again deviate from the laft direction $t b$; and defrribe the curve GRVWX.

Generally the whirling motion round its axis, is equal to its progreffive motion; for the friction of the plane foon reduces it to that. But take away the friction, and thefe two different motions may be what you will.

Cor. 1. The curvature in any place, is reciprocally as thefe three quantities, the velocity of rotation, the progrefve velocity, and the tangent of inclination.

For the curvature is as the angle $t \mathrm{Gg}$, that is, as $\frac{t g}{\mathrm{G} g}$ or as $\frac{\mathrm{S} . n \mathrm{FI}}{\mathrm{G} g \times \text { S.inclination }}$; that is, as $\frac{n \mathrm{I}}{\mathrm{FI} \times \mathrm{G} g \times \text { S.inclin. }}$; that is, as $\frac{\text { Cof. incl. }}{\text { FI } \times G g \times \text { S.inclin. }}$ or as $\frac{\mathbf{I}}{\mathrm{FI} \times G{ }_{\mathrm{G}} \times \tan . \operatorname{inclin}}$. For $n \mathbf{I}$ is as the cofine of inclination, being the face defcribed upon the inclined plane n I.

Cor. 2. Taking away all impeaiments, the circle always keeps the fame inclination to the borizon.

For the pofition of the plane $\mathrm{F} n \mathrm{I}$ is fuch, that the axes $\mathrm{CP}, \mathrm{C} q$, are both parallel to it. If we fuppofe gravity to act by a fingle impulfe at \mathbf{O}, then F will move to n, and P to q. And the plane of the circle endeavouring to defcend a little at D, and rife at E; a new point of the circle as t, lying beyond G will inftantly touch the plane; by which means it leaves the line AG. And fince at every

Fig. every point of contact as G, the pole P moves (at 36. each impulfe of gravity) in a line perp. to CG, and alfo parallel to the tangent arch at \mathbf{G}; and the like at every new point of contact; it is plain CP is always alike inclined to the horizon. Confequently, when gravity is continual, the circle coming continually to new points of contact, the axis CP will always revolve round at the fame inclination, and therefore the plane of the circle will alfo have the fame inclination to the horizon.

This might alfo be proved after the manner of the XXXth Prop. not confidering the progreffive motion of the circle.

All this is fuppofing there is no refiftance, friction, or other irregularity. But fince in fact, the refiftance of the air continually leffens its motion, and the fmoothnefs of the plane it runs on, caufes the foot or bottom of the circle to nide outward, which continually leffens the inclination, and brings the axis more upright; and the more oblique the plane of the circle is, the fafter it fides out. Upon thefe accounts it can never defcribe a circle, but only a fort of fpiral line; and the plane of the circle defcending lower and lower, at laft falls flat upon the horizon.

Cor. 3. Hence a circle moving witbout any refftance, \mathcal{F}^{2} c. upon a borizontal plane; will defcribe a circle upon that plane.

For the velocity and inclination continuing the fame; the curvature of the tract defribed, will be every where alike.

Cor. 4. And to find the diameter of the circle or orbit defcribed.
Let t be a very fmall part of time wherein $G g$ is defrribed, v the velocity of projection per fecond, b the fpace defcended by gravity in time t, s and c the fine and cofine of the circles inclination, $f=$

Sect. III. CENTRIPETAL FORCES. $16 \frac{i}{1^{2}}$ feet; then will $c b=$ fpace defcended along Fig. the inclined plane $\mathrm{F} f$; and by the laws of motion, 36 .

$$
\begin{aligned}
\mathbf{1}^{\prime \prime}: v:: t^{\prime \prime}: G g=t v . \\
\text { and } t t: b:: \mathbf{1}^{\prime \prime}: f=\frac{b}{t t} .
\end{aligned}
$$

Then whilit O has moved thro' the length $\mathrm{G} g$, t or I has defcended thro' the fpace $c b$ on an inclined plane parallel to $\mathrm{F} f$. But we proved $g t=\frac{n \mathrm{I}}{\mathrm{s}}=$ $\frac{t r}{s}=\frac{c b}{s}$. And therefore the diameter of the orbit $=\frac{\overline{G g}^{2}}{t g}=\frac{\overline{G g}^{2} \times s}{c b}=\frac{t t v v s}{c b}=\frac{v v s}{c f}=\frac{v v}{f} \times \tan$. in clination.

Cor. 5. Alfo to find the periodic time, or time of one revolution.

Let $\mathrm{D}=$ diameter of the orbit, then by Cor. laft, $\frac{\overline{\mathrm{Gg}}^{2} \times s}{c b}=\mathrm{D}$, and $\mathrm{G} g=\sqrt{\frac{c b \mathrm{D}}{s}}$. The cir. cumference of the orbit is $\frac{\pi \times \overline{\mathrm{Gg}}^{2} \times s}{c b}$ (putting π
$=3.1416$); and by uniform motion, $\mathrm{Gg}: t:$: $\frac{\pi \times \overline{\mathrm{Gg}}^{2} \times s}{c b}: \frac{\pi t s \times \mathrm{Gg}}{c b}$ the periodic time $=\frac{\pi t s}{c b}$ $\sqrt{ } \frac{c b \mathrm{D}}{s}=\pi \sqrt{ } \frac{t t s \mathrm{D}}{b c}=\pi \sqrt{ } \frac{\mathrm{SD}}{f c}$.

Or tbus,
$\mathrm{Gg}(t v): t:$: circumference $\frac{\pi v v s}{f c}:$ periodic time
$=\frac{\pi v s}{f c}=\frac{\pi v}{f} \times$ tan. inclination.

PROP.

PROP. XXXVI. Prob.

37. If DEF be the firface of a right cone, whofe axis AE is perpendicular to the borizon, and DHFG a circular plane parallel to the borizon; and if a circle ab revolves round in the periphery DHFG, with its axis $t \mathrm{Be}$ always parallel to the fide of the cone DE , where it then is. To find the periodic time of $a b$, in the circle DHFG.

Draw DBA perp. to DE, and BC perp. to AC. Let $\pi=3.1416, b=$ face defcended by gravity in the time t.

Then if the force of gravity be reprefented by AC , the centrifugal force at B to keep the circle $a b$ in that pofition, thro' its whole revolution, will be denoted by BC . Then it will be AC (the gravity) : BC (the cent. force) : : $b: \frac{\mathrm{BC}}{\mathrm{AC}} b=$ fpace defcended towards C, by the force in direction $\mathrm{BC}=$ the effect of the centrifugal force. Therefore by (Prop. II.) the periodic time is $\pi t \checkmark$ $\frac{2 \mathrm{BC}}{\frac{B C}{A C} \times b}=\pi t \sqrt{ } \frac{2 \mathrm{AC}}{b}$.

Cor. I. Hence the periodic time $=\pi t$
$\sqrt{\frac{2 \mathrm{BC}}{b} \times \text { tan. inclination } \mathrm{ABC}}$.
For S.A: S.B : : $\mathrm{BC}: A C=\frac{S . B}{S . A} \times B C=\frac{S . B}{\operatorname{cof} \cdot \bar{B}}$ $\times B C=\tan . B \times B C$; whence, the periodic time $=\pi t \sqrt{\frac{2 \mathrm{BC}}{b} \times \tan . \mathrm{ABC}}$.
Cor. 2. Draw Bl parallel to DE , and DL parallel to BC ; then the periodic time $=\frac{\pi t \times \mathrm{BC} \times \sqrt{ } 2}{\sqrt{ } \mathrm{CI} \times b}$.

For $\mathrm{AC}=\frac{\mathrm{BC}^{2}}{\mathrm{CI}}$.
Cor.

Sect. III. CENTRIPETAL FORCES.

Cor. 3. Hence the curve defcribed on the conic fur- Fig. face, is the fame as tbat defcribed on a borizontal 37. plane, as explained in the laft Prop. All the difference is, that the conic furface binders the circle ab from Jiding outward, which the borizontal plane camnot do; except it be fuppofed to be fo rough, that the circle cannot fide on it.

For in Cor. 4. of the laft Prop. v is put for the 36 . velocity of G along $A B$; but putting it for the velocity at C , you'll have the diameter of the orbit paffing thro' C : that is, (fig. 37.) inftead of 2DL we fhould find 2 BC for the diameter D of the orbit. 37. And by Cor. 5, the periodic time is $\pi t \sqrt{\frac{s \mathrm{D}}{b c}}$. And in Cor. I. of this Prop. the periodic time is πt $\sqrt{\frac{2 \mathrm{BC}}{b} \times \tan \text {. inclination; }}$ which is equal to the former, becaufe $\mathrm{D}={ }_{2} \mathrm{BC}$, and $\frac{s}{c}=\tan$. of the inclination. So the curve is the fame in both cafes.

P R O P. XXXVII. Prob.

To explain the motion of 'a top, or fuch like whirl- 38. ing body.

Let $A B C$ be a top whirling about in the order AEC; FDG a circle defcribed by any point D in the furface, K its center of gravity, BKS the axis of the top.

If the top be upright upon the foot B; that is, if BS be perp. to the horizon, and moves fwiftly about; it will continue upright till the motion flacken. But when it is going to fall, it will lean to one fide; therefore fuppofe D to be the loweft pount in the circle $F G$; then the top endeavours by its gravity to defcend towards D. Let the force of gravity alone move the point D thro' the fpace D 0 , in a very fmall time; during which, the rotary

Fig. motion would carry the point \mathbf{D} to r. Compleat 38. the parallelogram Drpo , and the point D will be carried thro' $\mathrm{D} p$; that is, the circle FDG will come into the pofition $\mathrm{D} p$; and therefore the axis BKS (perp. to the circle FG) will be moved in a direction towards H, perp. to DK; and the point S moved to n; the particle $S n$ being parallel to $D p$. After the fame manner by a new impulfe of gravity at p, the loweft point; the circle FDG, will be moved into a new pofition, below $\mathrm{D} p$, and the point S carried from n to t. And fo by every impulfe of gravity, the point S will be moved gradually forward, thro' the circle Sntqlz; and thus the top recovers itfelf from falling; the motion of \mathbf{S} being always parallel to that of D. And therefore the motion of the axis BS will be the fame way about, as the top's motion is. And thus the point S will continue to make feveral revolutions by a flow motion, whilft the top makes its revolutions about its axis, by a fwift motion.

Cor. I. This motion of the top and its axis, is $\mathcal{S}_{1}-$ milar to the motion of an oblong Jpheroid, and its nodes.

For (Cor. 6. Prop. XXX.) the nodes move the fame way about as the body revolves, and fo does the axis of the top; and therefore this motion may be called the motion of the nodes of the top.

Cor. 2. When the tops motion is very fwift, the circle Sql is very fmall; and as it grows flower, that circle will grow bigger and bigger, till the top falls.

For when the top's motion is very fwift, $\mathrm{D} r$ will be greater, and the angle $r \mathrm{D} p$ lefs; and the circle ${ }^{\mathrm{D} p} \mathrm{p}$ will deviate lefs from DG. And gravity having little power to difturb its motion, the circle Sgl will be extremely finall, and the top will revolve about the axis in appearance unmoved. But as the

Sect. III. CENTRIPETAL FORCES.

top's motion by refiftance and friction grows lefs Fig. and lefs, $\mathrm{D} r$ will be lefs; and the circle $\mathrm{D} p$ will de- 38 . viate more from DG; that is, gravity will have more and more power to difturb its motion; and the axis BS will defcribe a greater and greater circle with the point S, or rather a fpiral, till at laft the top falls down.

Cor. 3. As the top grows Now, and the motion 39. weak, and the pole S defcribes greater and greater circles, the foot B is thrown out to the oppofite fide, defrribing a circle $\mathbf{B} b$, whicb is greater as Sql is greater; and goes the fame way about.

For the center of gravity K always endeavours to be at reft, whilft the body revolves about Therefore when the top grows weak, and the pole S defcribes greater circles, the foot B is thrown further out to the oppofite fide; and being always oppofite, will defrribe a circle proportional to $\mathrm{S} q l_{\text {; }}$ the foot B going the fame way about as S does. And thefe circles $\mathrm{B} b$ will continually grow greater and greater till the top falls down. Till then the top rolls about and about from the pofition CAB to the oppofite pofition $c a b$, till the motion end, and the top falls down. And thefe are the principal phonomena of the motion of a top.
F I N I S.

$$
E R R A T A
$$

Page	Lin	
1	11	(Preface) irregularities only
59	19	$P \cong C$ and $P r C$.
78	6	4, R recedes from M, its axis 1 Bz

In the Plates.
Fig. 5. m fhould be fhaded.
Fig. 23. Pn fhould be perp. to Fp.

BOOKS Printed for J. Nourse, oppofite Cztharine Street, in the Strand.

${ }^{5}$ THE Elements of Trigonometry, by W. Emerfon. The fecond Edition, with large Additions; together with the Tables of Sines, Logarithms, \&c. 8vo. 1764.
2. The Elements of Geometry, by W. Emerfon, 8va 1763.
3. A Treatife of Arithmetic, by W. Emerfon, 8 vo . 1763.
4. A Treatife of Algebra, by W. Emerfon, 8vo. 1764.
5. Emerfon's Navigation. The fecond Edition, 12 mo. 1764.
6. A New Method of Increments, by W. Emerfon, 8yo. 1763.
7. The Arithmetic of Infinites and Conic Sections, by W. Emerfon, 8vo. 1767.
8. A Treatife of Algebra, by T. Simpfon. The third Edition, 8vo. 1766.
9. Effays on feveral curious and ufeful Subjects in fpeculative and mixed Mathematics, by T. Simpfon, 4 to. 1740.
10. Mathematical Differtations on a Variety of phyfical and analytical Subjects, by T. Simpfon, 4to. 1743,
11. Mifcellaneous Tracts on fome curious and very interefting Subjects, by T. Simpfon, 4 to. 1757.
12. Trigonometry, Plane and Spherical, with the Confruction and Application of Logarithms, by T. Simpfon. The fecond Edition, 8vo. 1765 .
1.3. The Doctrine of Annuities and Reverfions, by T. Simpfon, 8vo. 1742.
14. Appendix to Ditto, 8vo.
15. The Elements of Geometry, by T. Simpron. The third Edition, with large Alterations and Additions, 8vo. 1769.
16. Select Exercifes for young Proficients in the Mathematics, by T. Simpfon, 8vo. 1752.

BOOKS Printed for J. Noursr.

17. The Doctrine and Application of Fluxions, by T. Simpfon, 2 Vols. 8vo. 17.50.
18. The Elements of Euclid, by R. Simpfon, with the Book of Euclid's Data. To this third Edition are alfo added, the Elements of plane and fpherical Trigonometry.
19. Introduction a l'Arithmetique Vulgaire, 4to. 175 I.
20. The Elements of Navigation, by J. Robertfon. The fecond Edition, 2 Vols. 8vo. 1764.
2I. The Elements of Aftronomy, tranflated from the French of Monf. de la Caille, by J. Robertfon, 8vo. 1750.
21. The Military Engineer ; or a Treatife on the Attack and Defence of all kinds of fortified Places. In two Parts, 8vo. 1759.
22. The Accomptant; or the method of Book-keeping, by J. Dodfon, 4to. 1750.
23. The Mathematical Repofitory, by J. Dodfon, 3 Vols. 12mo. 1748,-1755.
24. An eafy Introduction to the Theory and Practice of Mechanics, by S. Clark, 4 to. 1764.
25. The Britilh Gauger ; or, Trader and Officers Infructor in the Royal Revenue of Excife and Cuftoms. Part. I. Containing the neceffary Rules of vulgar and decimal. Arithmetic, and the whole Art of Practical Gauging, both by Pen and Rule; illuftrated by a great Variety of curious and ufeful Examples. Part. II. Containing an hiftorical and fuccinct Account of all the Laws relating to the Excife: To which are added, Tables of the old and new Duties, Drawbacks, \&c. on Beer, Ale, Spirits, Soap, Candles, \&c. with a large and copious Index, by S. Clark, 12 mo . 1765.
26. The Elements of Fortification, by J. Muller. The fecond Edition, 8vo. 1756.
28: The Method of Fluxions and infinite Series, with its Application to the Geometry of curve Lines, by the Inventor Sir Ifaac Newton. Tranflated from the Author's original Latin. To which is fubjoined, a perpetual Comment upon the whole Work, by J. Colfon, F. R. S. 4 to. 1736 .
